
Use Runtime Verification to Improve the Quality of Medical
Care Practice

Yu Jiang1,2,3, Han Liu3, Hui Kong4, Rui Wang1, Mohammad Hosseini2, Jiaguang Sun3, Lui Sha2

College of Information Engineering, Capital Normal University, China1

Department of Computer Science, University of Illinois at Urbana-Champaign, USA2

School of Software, Tsinghua University, China3

Institute of Science and Technology, Austria4

ABSTRACT
Clinical guidelines and decision support systems (DSS) play
an important role in daily practices of medicine. Many text-
based guidelines have been encoded for work-flow simulation
of DSS to automate health care. During the collaboration
with Carle hospital to develop a DSS, we identify that, for
some complex and life-critical diseases, it is highly desirable
to automatically rigorously verify some complex temporal
properties in guidelines, which brings new challenges to cur-
rent simulation based DSS with limited support of automat-
ical formal verification and real-time data analysis.

In this paper, we conduct the first study on applying
runtime verification to cooperate with current DSS based
on real-time data. Within the proposed technique, a user-
friendly domain specific language, named DRTV, is designed
to specify vital real-time data sampled by medical devices
and temporal properties originated from clinical guidelines.
Some interfaces are developed for data acquisition and com-
munication. Then, for medical practice scenarios described
in DRTV model, we will automatically generate event se-
quences and runtime property verifier automata. If a tem-
poral property violates, real-time warnings will be produced
by the formal verifier and passed to medical DSS.

We have used DRTV to specify different kinds of medical
care scenarios, and applied the proposed technique to assist
existing DSS. As presented in experiment results, in terms
of warning detection, it outperforms the only use of DSS
or human inspection, and improves the quality of clinical
health care of hospital.

Categories and Subject Descriptors
D.2.2 [Software Tools and Engineering]: Design Tech-
niques; J.3 [Life and Medical Science]: Health

General Terms
computer-aided software engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICSE’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05 ...$15.00

DOI: http://dx.doi.org/10.1145/2889160.2889233

Keywords
Clinical Guideline, Real-time Data, Runtime Verification,
Medical Decision Support System, Health Care.

1. INTRODUCTION
Within the scope of cyber-physical-human medical sys-

tem, clinical guidelines and decision support sub-systems
play a very important role in coordinating medical staffs to
improve patient care. With interpreting text-based guide-
lines into some computer executable format, decision sup-
port systems are designed to monitor actions and observa-
tions during practice work-flow, and generate reminders and
advice when corresponding guideline is not satisfied. Lots
of evidence have showed that, using clinical guideline based
decision support system, quality of medical care sometimes
even the survival rate of patients, would be improved, and
the medical care practice variability would be reduced [28].
However, with rapid developments of medicine science and
computer technology, pathological model of some disease are
becoming more and more precise and complex, and more
real-time vital signs about patient need to be sampled and
analyzed to prevent some complex non-deterministic tempo-
ral potential complications, which brings new challenges to
current simulation based DSS.

For example, during the best practice guideline of ischemic
stroke therapy [15], patient’s neurological symptoms like
speech difficulty and vital signs such as blood coagulation
index should be monitored in real time, after the administra-
tion of recommended tissue plasminogen activator (rt-PA).
If any of vital signs are out of range, stroke team will issue
corresponding treatment orders to head nurse in ambulance
or ICU to prevent patient from life-threatening complica-
tions such as hemorrhagic bleeding. Timely response based
on real-time data monitoring and run-time rigorous verifi-
cation is highly desirable, because a huge number of brain
cells die every second. Another example is about the best
practice guideline of infants respiratory distress syndrome,
vital signs about blood-gas values should be monitored. If it
is continuously above the normal range for at least 3 hours,
the treatment is fine. But if it is too steep for at least 30
seconds, further emergency actions should be taken [5]. In
both cases, specifying complex temporal properties for auto-
matically rigorous verification would be more reliable than
semi-automated manual vision inspection of current simula-
tion based DSS.

More specifically, through the discussion with physicians,
we learned that those phenomenons bring new challenges to

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 112

medical DSS in two aspects. First, although some guideline
based DSS support static properties, some simple and rough
temporal properties and clinical information sub-systems (ie.
patient record systems) by simulation based precondition ex-
amination, ruinously run-time verification of complex tem-
poral properties based on real-time data is not supported.
Besides, not all vital signs will be stored in current patient
record systems. Second, it not easy for medical staffs to
monitor a huge number of vital signs for a long time, and in-
put those conditions and violations into DSS in time. Statis-
tics shows that medical staffs are under tremendous pressure
and overloaded by a great amount of unorganized informa-
tion. It is not easy to relate the information contained in
the complex medical systems with temporal properties of
complex complications with semi-automated manual vision
inspection.

In practice, we propose a real-time data based runtime
verification technique to cooperate with current DSS, to re-
lease medical staffs from safety critical complex temporal
properties and huge amounts of vital signs. It combines for-
mal methods in software engineering and practice guidelines
in medicine to rigorously verify runtime temporal proper-
ties automatically, and can be implemented and plugged in
existing DSS to strength health care. A domain specific
language DRTV is proposed to specify the medical care sce-
nario, as well as data and properties contained in this sce-
nario. The proposed language inherits some features from
existing computer interpretable formations of guideline for
compatibility, while focuses more on data part and enhances
property specification ability with past time linear temporal
logic [16, 2]. Based on DRTV model, we develop a tool to
automatically generate runtime monitors, which will contin-
ually extract scenario related data, parse their values to get
event sequences, and input the event sequences to a runtime
verification engine to rigorously check the temporal proper-
ties, accompanied with some interfaces for data communi-
cation. Overall, main contributions of our work are:

1. A runtime verification technique based on real-time
data of patient and runtime verification is adapted to
cooperate with medical decision support systems.

2. A domain specific language for specifying real-time
data and complex temporal properties within a clin-
ical scenario of best practice guideline are designed,
and corresponding tools are implemented.

3. A real device based testing and evaluation are con-
ducted to test the efficiency. To the best of our knowl-
edge, this is the first study on applying runtime verifi-
cation to improve the clinical health care.

The paper is organized as follows: related work is pre-
sented in Section 2. Some backgrounds on runtime verifi-
cation and past time linear temporal logic are introduced
in Section 3. Proposed run-time verification technique is
presented in Section 4, including domain specific language,
and run-time analyzer and verifier. Experiment results on
some artificial examples and real applications plugged in real
medical device are given in Section 5, learned lessons are
presented in Section 6, and we conclude in Section 7.

2. RELATED WORK

Last decades, health care organizations and providers pay
many efforts to guideline development and guideline based
DSS implementation for daily health care. For guideline
development, that is, structuring documents suggesting de-
tailed steps to assist practitioner decisions about appropriate
health care. Researchers pay attention to logic correctness
and consistency to patient management technique and drug
developments of the clinical guideline itself, and lots of for-
mal methods have been adopted in verification and analysis
of guidelines. Interactive theorem proving and model check-
ing have been successfully applied to prove the consistency
correctness of guideline properties. Some temporal quality
properties of guideline have been captured based on the ab-
ductive diagnosis theory, further with the use of automated
reasoning tools, such as the interactive theorem prover KIV
or the use of program verification techniques [11]. Most of
the analyzed properties are internal coherence properties of
guideline and domain specific knowledge, while we conduct
our work on the basis of well verified guidelines, mainly focus
on the application of those guidelines.

For guideline application, that is, implementing well val-
idated and verified practice guidelines into computer-based
decision support systems to provide better health care. Ac-
tually, according to the Institute of Medicine, these sys-
tems improve the acceptance of guideline with automation
of medicine practice. Text-based guidelines are represented
and encoded into a computer-interpretable format, such as
Arden [12], GLIF[26] , PROforma [8] and Asbru [5]. With
the syntax and semantics of them, inference and decision
making methodologies used in artificial intelligence such as
rule-based reasoning, and probabilistic network can be de-
signed and implemented. Then, decision support systems
such as Spock [30] and CREDO [9] are developed to mon-
itor actions and observations of medicine staff and provide
corresponding suggestions, through task execution, condi-
tion examination, and procedure visualization. However,
many clinical problems are complicated and involving many
timely decision-making according to a huge number of real
time vital signs. Then, task based simulation and staff obser-
vation based semi-automated collaboration of decision sup-
port systems encounter major difficulties. Rather than semi-
automated informal methods such as artificial intelligence
algorithms, our work will use runtime verification engine to
deal with real time data automatically. In this way, real time
rigorously verified results will be produced to assist current
decision support systems.

For runtime verification, that is, verifying properties with
runtime information of systems. It is effective to verify real
time temporal properties, and has been applied in many
applications. Within last ten years, considerable amount
of work has been invested in program runtime verification
systems [4]. These pieces of work are often extensions of As-
pectJ [13] for java programs. Some exceptions are ARACHE
[7] and RMOR [10]. ARACHE performs runtime weaving
into binary code of C programs with a limited form of regular
expressions, while RMOR monitors the execution of C pro-
grams against state machines using aspect-oriented pointcut
language to connect events to code fragments. For hardware
runtime verification, property specification is usually trans-
lated into a hardware description such as VHDL and Ver-
ilog, which is then synthesized into a netlist and loaded into
dynamically reconfigurable blocks of FPGA [27, 21]. Some
work about the run-time verification of medical systems is

113

presented in [18, 19, 14]. They focus on mitigating safety
hazards of closed-loop or open-loop medical systems [1, 3].
They work on runtime safety and reliability status of the
system devices, hardware and communications, and nothing
is related to decision support systems and clinical guidelines.
For example, King et al. proposed a formal specification lan-
guage to express and reason safety properties of on-demand
medical systems [14]. Pajic et al. combined simulation-
based analysis and model checking to guarantee the safety
of closed-loop medical systems [25]. In [24], a model-driven
approach allows us to prove safety properties of devices on
the modeling level and ensures that the abstract models used
in the verification process are sound with respect to actual
dynamics of system. We conduct our work without consid-
ering the status of hardware systems, mainly focus on the
real-time data of patient sampled in devices and their verifi-
cation on temporal properties derived from clinical practice
guidelines.

3. BACKGROUND
Runtime verification is the discipline of computer science

that deals with the study, development, and application of
those verification techniques that allow checking whether a
run of a system under scrutiny satisfies or violates a given
correctness property [17]. We use past time linear tem-
poral logic (ptLTL) to specify the property, which pro-
vides temporal operators that refer to past states of an exe-
cution trace relative to a current point of reference [16]. The
syntax and semantics are given as below.

ptLTL syntax: Let AP = {p1, p2 · · · pi · · · pn} be a set
of atomic propositions, then ptLTL formulae is:

φ, ψ ::= pi | ¬φ | Xφ | X−1φ | φ ∧ ψ | φSψ | φUψ

Where U, S,X,X−1 stands for “until”, “since”, “next” and
“previous” temporal operators respectively. Based on these
basic operators and some standard abstractions, temporal
operators such as“eventually”, “always”, “always in the past”,
and “eventually in the past” can be defined and denoted as
F, F−1, G, and G−1, respectively. From definition, we can
see that ptLTL extends classical logic LTL with the past
modalities, which is good for complex temporal properties
presented in clinical guideline.

ptLTL semantics: Let ω be an infinite sequence ω =
ω1ω2 · · · , with a mapping η : ∀i, ωi → 2AP labeling atomic
propositions that hold in each position ωi. With the struc-
ture path (ω, η), a nonnegative integer i, and ptLTL for-
mulae φ and ψ, the relation that “φ holds at position ωi”
denoted as ω, i |= φ can be inductively defined as below:

ω, i |= p iff p ∈ η(ωi)
ω, i |= ¬φ iff ω, i 2 φ
ω, i |= Xφ iff ω, i+ 1 |= φ
ω, i |= X−1φ iff ω, i− 1 |= φ
ω, i |= φ ∧ ψ iff ω, i |= φ and ω, i |= ψ
ω, i |= ψSφ iff ∃m ∈ [0, i], ω,m |= φ,

and ∀n ∈ [j + 1, i]ω, n |= ψ
ω, i |= ψUφ iff ∃m ∈ [i,∞), ω,m |= φ,

and ∀n ∈ [i,m)ω, n |= ψ

Where two ptLTL formulae φ and ψ are said to be equiva-
lent, when condition “ω, i |= φ iff ω, i |= ψ” is satisfied for
all structure path ω and i. The equivalence relation between
them can be denoted as φ ≡ ψ.

4. VERIFICATION APPROACH
In this section, we introduce how the work-flow of real-

time data based runtime verification technique cooperates
with existing medical care systems, including domain spe-
cific language DRTV used to specify data and properties of
medical care scenario, and semantics formalization to for-
malize the scenarios described in a DRTV model into the
input sequence and automata for runtime verification.

4.1 Verification Work-flow Overview
The proposed real-time data based runtime verification

technique is presented in Figure 1. First, we build a DRTV
model to specify vital real-time data sampled by medical de-
vices or from Electronic Patient Record (EPR), and tempo-
ral properties originated from clinical guidelines. For data
part specification, information such as data format, loca-
tion, and type should be captured. For specification of prop-
erty, ptLTL formulae should be written correctly according
to description of clinical guidelines. Also, event mapping
expressions would be defined on current data, or histori-
cal data. Then, for medical practice scenario described in
DRTV model, we will formalized it for automatical gen-
eration of corresponding runtime property monitor with a
developed engine based on MOP technique [22]. The auto-
matically generated monitor will continually read real time
data or historical data, verify temporal properties on them,
and produce output to assist decision support systems to
produce better health care.

Then, let us see the structure of runtime monitor. As
presented in Figure 2, work-flow of the generated runtime
monitor by our developed engine is based on three compo-
nents: data parser, event path generator, and property veri-
fier. These three components are automatically derived from
DRTV model with some formalization rules implemented in
the engine. They will cooperate together to accomplish the
task that real time patient data is processed to get runtime
verification result, with main steps listed below:

Data Parser Event Path
Generator

Property
Verifier

Data Value Event Result

Runtime monitor based on MOP framework

Figure 2: The runtime monitor generated according
to the DRTV model.

1. Data Parser: This component is formalized and
automatically generated according to the data descrip-
tion part of DRTV model. With data parser, all rel-
evant vital signs within model description will be ab-
stracted from data packet sampled by medical devices,
or from electronic patient records.

2. Event Path Generator: This component is formal-
ized and automatically generated according to the event
description part of DRTV model. With event parser
generator, values of vital signs abstracted in previous
step will be used to evaluate boolean formula to get
corresponding events.

3. Property Verifier: This component is formalized
and automatically generated according to the prop-
erty description part of DRTV model. With property

114

DRTV Model

Medical Device
Sensors

Clinical
Guideline

Electronic
Patient

Record (ERP)

Runtime
Monitor

Real Patient
Decision

Support SystemVital Sign

Data Format

Timely Result

Data

Property

Data Format

Figure 1: The real-time based run time verification technique, and interfaces with main components in current
medical care systems .

verifier, events generated in previous step will be read
to decide the transition of monitor automata. If the
automata transit to a violation state, timely response
should be produced to the decision support system to
remind further actions of medical staffs. Otherwise,
the monitor will continually read the event.

An example of monitor workflow is presented in Figure
3. Kernel of the real time data based runtime verification
technique is the DRTV model, which is independent of the
format of existing computer interpretable guidelines. Be-
sides, the automatically generated runtime monitor through
a developed engine based on MOP is running independently
from current decision support systems. So, the proposed
technique is platform independent, and could be customized
and plugged into many existing medical care systems.

Packet_Start

Packet_End

185

70

………

Data
Parser Blood_Pressure=185

Event Path
Generator Event_HBP=true

Property
Verifier Result ViolationRuntime Property:[]!Event_HBP

1 2

3

Figure 3: A runtime verification example to monitor
blood pressure.

4.2 Domain Specific Language DRTV
The proposed domain specific language DRTV should pro-

vide the ability to describe data, event and temporal prop-
erties in different medical scenarios, based on which, we will
formalize those elements to generate runtime monitor. The
language should also be clear to use. We survey many for-
mats of existing computer interpretable guidelines, and build
our syntax on them, with more focus on data and ptLTL for-
mula property specification. For example, the data specifica-
tion part in DRTV makes use of some features from syntax
of Arden, a widely used clinical guideline modeling language.
In this way, medical staffs and engineers of medical systems
will be more familiar to understand and construct a DRTV
model, even when they have little experience in run-time

modelling or verification. Kernel syntax of the domain spe-
cific language DRTV is presented as below.

Scenario module: Each DRTV model contains one mod-
ule for a medical scenario. Each module starts with a re-
served word Scenario, followed by scenario name and entity.
The main entity consists of five constructs data resource, cur-
rent data, history data, event, and property. The first con-
struct data resource specifies resource of real time data.
If the resource is medical device sensors, name and data
packet length of the device need to be captured by con-
struct device name and packet length. If the resource is
electronic patient record, name and record length of the pa-
tient record need to be captured by construct record name
and record length. The length will be used to help to locate
and abstract data from data packet or patient record. Note
that different medical device sensors and electronic patient
record systems will use different kinds of information format
for transmission.

DRTV model ::=
′
Scenario

′
< module name > < module entity >

module entity ::= < data resource >

< current data >

< history data >

< event >

< property >

data resource ::=
′
Medical Device Sensors :

′

< device name >< packet length >;

|′Electronic Patient Record :
′

< record name >< record length >

record length ::= integer

packet length ::= integer

device name ::= (
′
a
′
..
′
z
′|′A′..′Z′|′ ′)(′a′..′z′|′A′..′Z′|′0′..′9′|′ ′) ∗

record name ::= (
′
a
′
..
′
z
′|′A′..′Z′|′ ′)(′a′..′z′|′A′..′Z′|′0′..′9′|′ ′) ∗

module name ::= (
′
a
′
..
′
z
′|′A′..′Z′|′ ′)(′a′..′z′|′A′..′Z′|′0′..′9′|′ ′)∗

Vital sign: Current data and history data are captured in
construct current data and history data contained in main
entity, respectively. Because each packet or record may con-
tain many vital signs corresponding to a set of indexes, the
construct current data is refined with a reserved word cur-
rent, and a set of construct index. Each index specifies the
type of value, position and length of vital sign contained in
packet or record. Three basic data types (Integer, String
and Boolean), and their corresponding array version (In-
teger[], String[] and Boolean[]), are supported. With the
position and length of vital signs, and the length of data
packet and record, value of vital signs will be located and
abstracted exactly.

115

current data ::=
′
current

′
: (< index >) ∗

index ::= < data type > < data name > < data location >

data type ::=
′
int
′ | ′bool′ | ′string

′ |
′
int[]

′ | ′bool[]′ | ′string[]
′

data location ::= < data position > < data length >

data position ::=
′
data start position :

′
integer

data length ::=
′
data length :

′
integer

The construct history data is refined with a reserved word
history, and a set of construct history index. Each his-
tory index specifies the type of value, initial value, and up-
date rule of this history index. Supported data types for
history data are the same with current data. The update
rule is some general java statements that abstract the value,
according to the previous packets and records. Also, the
update rule can be constructed based on the position and
length of current data, with an additional integer to denote
the number of packets needs to be searched ahead.

history data ::=
′
history

′
: (< history index >) ∗

history index ::= < data type > < data name > < abstract rule >

data type ::=
′
int
′ | ′bool′ | ′string

′ |
′
int[]

′ | ′bool[]′ | ′string[]
′

abstract rule ::= < ahead num >< data position >< data length >

| java − assignment − statement

ahead num ::=
′
previousnumber :

′
integer

data position ::=
′
data start position :

′
integer

data length ::=
′
data length :

′
integer

Real-time event: Event is defined in the fourth construct
event contained in the main entity. Because vital signs con-
tained in each packet or record may indicate several events, a
set of identifiers is used to differentiate them. Traditionally,
each event is defined as some boolean expressions on cur-
rent data. But in case of some temporal properties, event
may also use history data. Computations on these data are
supported for events related to complex decision logic. We
can use just one event with a boolean expression on these
data, to release medical staffs from keeping monitoring de-
vice screen of multiple traces.

event ::=
′
event :

′
(< event name >

′
=
′
< bool exp >) ∗

bool exp ::= < current data name >

| < history data name >

| < bool value >

| < comput exp >< compar op >< comput exp >

| < bool exp >
′
&
′ | ′||′ < bool exp >

| ′!′ < bool exp >

| ′(′ < bool exp >
′
)
′

;

comput exp ::= < current data name >

| < history data name >

| < int value >

| < comput exp >< arithe op >< comput exp >

| ′(′ < comput exp >
′
)
′

;

arithe op ::=
′
/
′ | ′%′ | ′ +′ | ′ −′ | ′ ∗′ ;

compar op ::=
′
==
′ | ′! =

′ | ′ <′ | ′ ≥′ | ′ ≤′ | ′ >′ ;

Temporal property: Temporal property corresponding to
events is defined in the fifth construct property of main en-
tity. It consists of two parts, a set of ptLTL formulae and
handlers. Both parts can be derived from clinical best prac-
tice guidelines, such as the logic description part of Arden.
Some newly developed medicine knowledge that are not pre-
sented in current clinical guidelines can also be encoded into
these two parts. The ptLTL formulae provide ability to de-
scribe most static and temporal conditions, and the handlers

will take the result of verification to produce timely response
to medical staffs. Besides the standard temporal operators,
extra temporal operators such as “eventually”, “always”, “al-
ways in the past”, and “eventually in the past” denoted as
F, F−1, G, and G−1, are also explicitly encoded in the con-
struct. If the property is violated, suggested actions and
statements within the handler will be executed, and the
runtime monitor would be reset to the initial state auto-
matically. The warnings as well as some status information
can be encoded in the handler construct through some print
statements of standard Java language.

property ::=
′
property :

′

(< propoety name >
′
=
′

< ptLTL exp > < handler >) ∗ ;

ptLTL exp ::= event name

| ¬ptLTL exp

| X ptLTL exp | X−1
ptLTL exp

| F ptLTL exp | F−1
ptLTL exp

| G ptLTL exp | G−1
ptLTL exp

| ptLTL exp ∧ ptLTL exp | ptLTL exp S ptLTL exp

| ptLTL exp U ptLTL exp

handler ::= java − statement

model name ::= (
′
a
′
..
′
z
′|′A′..′Z′|′ ′)(′a′..′z′|′A′..′Z′|′0′..′9′|′ ′) ∗ ;

Based on those syntax definitions presented above, we can
build a scenario module within a DRTV model. Real-time
vital signs and complex temporal restrictions on these signs
of patient could be described in a structured manner. Then,
the runtime monitor, consisting of the data parser, event
path generator, and property verifier will be formalized and
generated automatically from a developed engine, as de-
scribed in the following subsection.

4.3 Semantics and Monitor Formalization
With scenarios described in the DRTV model, we need

to define the semantics to formalize the data, event, event
paths, and property verifier automata for computer inter-
pretable formal verification as below.

Vital data formalization: For the current data, which
are corresponding to the vital signs of patient, they are for-
malized as a variable set D derived from the construct cur-
rent data. The type of each data d derived from the con-
struct data type is denoted as T (d), where T (d) ∈ {Integer,
String, Boolean, Integer[], String[], Boolean[]}.

In the same way, we can formalize the history data. They
are formalized as a variable set Dh derived from the con-
struct history data, and the type of each data dh is the same
with their corresponding current data d. For each variable
d ∈ D, there may be several dhi ∈ Dh used to capture differ-
ent time nodes of history. For the history variable, extending
its assignment with some general computations on history
values is optional for complex restrictions. Assignment of
the data set is dependent on the information contained in
sampled packets and records, formalized as below,

Formalization 1: θ is a full assignment to D on
the domain of type, where θ(d) is the value of data d
contained in θ, which is derived from the data location
construct. θh is a full assignment to Dh, where θ(dh) is
the value of data dh contained in θh, which is derived
from the abstract rule construct.

where θ is a new sampled data packet or a new electronic
patient record item, and θh is a previously sampled packet
or history record.

116

Real-time event formalization: After the data value
assignment is abstracted from data packets or records, boolean
expressions described in the construct bool exp should be
evaluated to get the event set initialized. All events indi-
cated in a data packet or record need to be addressed cor-
rectly. Let E be a set of events derived from the construct
event name, and the data set related to the event set is de-
noted as DE, where DE ∈ D ∪ Dh. Then, the event set is
formalized as:

Formalization 2: ∀e ∈ E, e is a full assignment to
the boolean expressions on DE. Event e is said to be
happened when the assignment is evaluated to be true,
which is denoted as e(θ(DE)) == true.

For event path, it is more complex, because each packet or
record may indicate more than just one event corresponding
to different indexes. The path should be defined as a se-
quence of set, where each set ai is the combination of events
evaluated to be true. It is a subset of all events contained
in E. Then, the event path is formalized as:

Formalization 3: π∗ is the group of all finite set
sequence π (π = π1π2π3 · · ·πn), and πω is the group of

all infinite set sequence π
′
(π
′

= π
′
1π
′
2π
′
3 · · ·). Each πi

contained in the set sequence is the event combination
evaluated to be true in the data packet or record θi,
denoted as πi = {ej |ej(θi(DE)) = true} and obviously

πi ∈ 2E. Furthermore, if ∀i ∈ [1, n], πi = π
′
i , then

π
′
i is an extension of π. All possible extensions of the

finite path π are denoted as Σ(π).

Take the example presented in Figure 3 to demonstrate
the event and path formalization and generation. There
are two indexes conveyed in the sampled data packet, blood
pressure and heart rate. We can define six events on these
two data through different boolean expressions.

Event HBP := (Blood Pressure > 180)
Event LBP := (Blood Pressure < 90
Event NBP := (Blood Pressure ≤ 180

∧Blood Pressure ≥ 90)
Event HHR := (Heart Rate > 120)
Event LHR := (Heart Rate < 60)
Event NHR := (Heart Rate ≤ 120

∧Heart Rate ≥ 60)

Based on basic events, some complex events can be defined
as below. They can also be defined on those indexes directly
with more complex boolean expressions.

Event Safe := (Event NHR ∧ Event NBP)
Event UnSafe := (Event LHR ∨ Event HHR

∨Event LBP ∨ Event HBP)

Those events will be evaluated when there comes a data
packet or a patient record. The event set contained in
the data packet of Figure 3 is {Event HBP, Event NHR,
Event Unsafe}. A path for continually sampled packets of
medical care system might be {Event HBP, Event NHR,
Event Unsafe}, {Event NBP, Event HHR, Event Unsafe},
{Event NBP, Event NHR, Event safe} · · · .

Temporal property formalization: The property de-
rived from the construct property is the verifier that parti-

tions path into three types, violation, validation , and un-
known. Then, the property verifier is formalized as:

Formalization 4: A property verifier derived from
the ptLTL formula φ is a full assignment to π∗ on the
domain {violation, unknown, validation}, where ∀π ∈
π∗, the assignment rule is:

– If ∀ π
′
∈ Σ(π), π

′
|= φ, then φ(π) = validation

– If ∀ π
′
∈ Σ(π), π

′
2 φ, then φ(π) = violation

– Else φ(π) = unknown

Condition of the assignment rule can be realized by the
equivalent monitor automata of the ptLTL formula, which
can be customized and automatically generated within MOP
[22, 2]. The automaton formalized as below is used to mon-
itor the event sequences defined on the real-time vital signs

of patient, and the condition π
′
|= φ is satisfied when the

corresponding path is accepted by the automaton.

Formalization 4: The customized monitor automa-
ton corresponding to the plLTL formula φ is defined as
a tuple 〈S, s0, α, L,O〉, where:

– S = {s0, · · · , sn} is the set of states

– s0 is the initial state

– α = {α0, · · · , αn} is the set of events contained
in the formula φ, and αi ∈ 2E

– L = {l0, · · · , ln} is the transition, and li ∈ S ·E ·S
– O = {o0, · · · , on} is the output that maps the state

to {violation, validation, and unknown}.

Take the scenario presented in Figure 3 as an example. If
there is a requirement that patient is not allowed to exceed
the safe threshold of blood pressure, which can be defined
on events Event HBP and Event LBP . This requirement
can be formalized as a ptLTL formula presented below:

[](notEvent HBP ∧ notEvent LBP)

Then, the customized and generated monitor automaton
corresponding to this formula is depicted in Figure 4.

s0 s1
{Event_HBP}, {Event_LBP},
{Event_HBP, Event_LBP}

{Event_HBP, Event_LBP}
{Ø}, {Event_HBP}, {Event_LBP},{Ø}

Figure 4: The formalized monitor automaton.

The automaton will start in the initial state s0. When
any of the event sets labeled on the transition happens,
such as {Event HBP} or {Event LBP}, or both of them
{Event HBP, Event LBP}, the automaton will transit to
violation state s1. If there is no event, the automaton will
stay in the initial state s0. The automaton only focuses on
the event that is related to the property, while others will
not be considered for efficient path classification.

117

Tool Implementation: Based on above syntax and for-
malization semantics, we implement an interface for DRTV
model construction and an engine to automatically trans-
late the DRTV model into the executable runtime monitor,
which consists of data abstractor, event sequence generator,
and property verifier. The interface also contains a backend
to help validate the syntax correctness and store the model
in .XML format. Then, the translator contained in the en-
gine will parse the XML file to executable java files. In order
to get real time data from the medical devices or electronic
patient recode systems, we also develop a communication
interface Sink for data transfer [23]. The overall structure
of the tool implementation and interface cooperation is pre-
sented in Figure 5.

Data Parser Event Path
Generator

Property
Verifier

Data

Value Event

ResultGenerated Runtime monitor

Scenario described in DRTVmodel . xml

Translator Engine

Sink data
interface

Sink data
interface

Medical Device
Sensors

Decision Support
System

Data Event Property

Patient Doctor

DRTVModel Construction Interface

Figure 5: Tool implementation and interaction. The
green modules are implemented components, the
yellow modules are generated automatically, the
blue files are input by the domain model engineers,
and the blue modules are existing decision support
systems or medical device sensors.

5. EXPERIMENT RESULTS
In order to evaluate the efficiency and scalability of the

proposed real-time data based runtime verification technique,
we apply it to the best practice guidelines of real medi-
cal care scenarios, then accomplish some real medical de-
vice based simulation with the closed collaboration of Carle
Foundation Hospital. We conduct experiments and generate
different runtime verifiers with consistency to a previous de-
veloped decision support system 1 which contains integrated

1The system and related video is presented in
http://publish.illinois.edu/mdpnp-architecture/
advanced-situation-awareness/

workflow, data to decision pipeline, and Medical Device Plug
and Play (MDPnP).

The first scenario for test is a best practice guideline rec-
ommendation for stroke care [20]. According to the guide-
line, for the ischemic stroke patient who meets proper crite-
ria [15], administration of IV rt-pa is recommended in a dose
of 0.9 mg/kg (maximum of 90 mg), with 10% of the total
dose given as an initial bolus and the remainder infused over
60 minutes. Since a major risk for patient using IV rt-PA is
the complication of brain hemorrhage, patient’s neurological
symptoms such as speech difficulty, facial droop, weakness
in hands and vital signs such as the blood pressure, heart
rate, SpO2 and blood glucose level index will be monitored
in real time. If any of the vital signs are out of range, stroke
team will issue corresponding treatment orders.

Scenario : Stroke_Care
Medical Device Sensors : intellivue mp70 Data Length : 64;

Current :
Int Blood_Pressure , Data Start : 8 , Data Length : 8;
Int Heart_Rate, Data Start : 8 , Data Length : 8;

Event :
Event_UNBP = (Blood_Pressure > 180 || Blood_Pressure < 90);
Event_UNHR = (Heart_Rate > 120 && Heart_Rate < 60);

Property:
SafeState = [](not (Event_UNBP \/ Event_UNHR);
Handler_SafeState{

Print(“Blood :”+Blood_Pressure+“Heart:”+ Heart_Rate);
Print(“Warnings!!!” + ring());

};
End Scenario

Figure 6: DRTV model for the blood pres-
sure and heart rate runtime verification, where
EVENT UNBP and EVENT UNHR denotes the
un-normal events leading to property violation.

For example, when the patient’s blood pressure exceeds
the safe threshold 180, the stroke team may suggest inject-
ing nitroprusside to control the blood pressure. If the nitro-
prusside infusion causes the neural deterioration, the physi-
cian may change the drug accordingly. If blood pressure
and blood glucose level cannot be controlled under accept-
able ranges, or signs of brain hemorrhage appear, the stroke
team may stop the rt-PA and adjust its schedule to treat
complications. Timely response based on the real-time data
monitoring and runtime rigorous verification is highly desir-
able, because every second the huge number of brain cells
die, for example, 32000 brain cells will die within every sec-
ond a clot blocks blood flow to brain. It is not easy for staff
to keep the neurological testing and vital sign monitoring for
a long time, but a simple DRTV model segment for blood
pressure and heart rate runtime verification can be modeled,
as presented in Figure 6.

Other data parameters such as SpO2 and temperature,
and some corresponding events corresponds to this scenario
can also be declared in the model. Those kind of static
properties can also be supported by existing decision support
systems such as Spock and CREDO. But for some temporal
properties such as when an event indicates the high blood
pressure, the following event must indicate the nitroprusside
injection, it can also be defined as

[](Event HBP X Event Nitroprusside)

which is not supported in Spock and CREDO. Then, the
generated runtime verifier will be used to verify the real

118

Sensors Backend Runtime verifier
and Cooperating DSS

Real‐time data

Figure 7: The real data and device based runtime simulation and verification.

time data, and produce the timely response automatically,
as presented in Figure 7. The real time data monitor de-
vice Phillips IntelliVue MP70 with the sensors attached on
it are used to sensor the real-time data, and the derived
runtime verifier of the DRTV model and the data inter-
face are running on the computer. With the developed data
interface and MDPnP driver, we continually get the data
from Phillips IntelliVue Mp70 and pass them to the gener-
ated runtime verifier or our implemented decision support
system directly. Initially, the real-time data sampled from
myself will not violate the property described in Figure 6.
It is not easy to adjust my blood pressure 118 to trigger the
violation of property, so inverting the property for testing
is adopted in lab simulation. When the property verified is
[] Event UNP , timely warnings is produced immediately.

We also do tests on some more complex guidelines, such
as the guideline of infants respiratory distress syndrome. If
the blood-gas values are too steep for at least 30 seconds,
warnings and further actions should be taken. It is not easy
to decide the condition continuously steep of 30 seconds with
semi-automated manual vision inspection. But with the pro-
posed lightweight runtime verification technique, it can be
automatically monitored by the following ptLTL formula
encoded in DRTV model.

[](Event Steep BG X · · ·X Event Steep BG︸ ︷︷ ︸)
Where Event Steep BG is defined as a boolean expression
on two consecutive data packets (BloodGlas−BloodGlash1 ≥
Steep Threshold), one for current data packet and one for
the history data packet. When there are 30 number of con-
secutive steep blood-gas incensement, the property would be
violated, and timely warning will be responded immediately.

After those tests, we use SimMan patient simulator to set
the vital signs of virtual patient and the value of real time
data monitor device Phillips IntelliVue MP70, which can be
furthered passed to the cooperating decision support system
and generated runtime verifier. In this way, more guideline

properties for potential complications can be verified with
different kinds of values set by the SimMan patient simula-
tor, and the results come as expected.

Table 1: Detected warning comparisons for different
scenarios, and the symbol ∅ means not support.

Property Number Manually DRTV Spock
UN HBP 10 10 10 10

Steep BG 20 10 10 10 ∅
Steep BG 30 10 9 10 ∅

UN HBP 100 94 99 100
Steep BG 20 100 81 98 ∅
Steep BG 30 100 76 98 ∅

UN HBP 1000 931 992 991
Steep BG 20 1000 773 993 ∅
Steep BG 30 1000 645 992 ∅

Furthermore, we choose three typical properties to help
us test the efficiency, with results presented in table I. The
first column of table I is the property name which is de-
fined in lab test above, the second column is the number
of violations we insert into the virtual patient through Sim-
Man patient simulator, the third column is the violations
manually detected by staring at real-time data monitor de-
vice, the fourth column is the violations detected with the
accompanied runtime verifier, and the fifth column is the
violations detected with the accompanied Spock DSS. From
the trend of the third column, we can find that the accuracy
decreases along with the complexity of the property and the
work time. For the runtime verifier, it performs steadily as
in the fourth column. Noting that the DRTV and Spock
will produce 10, 100 or 1000 number of warnings, but one or
two percent may also be ignored because of noise or other
effects that disturb them. According to the simulation, it is
reasonable to draw the conclusion that the lightweight run-
time verifier cooperating with the existing DSS running on
the computer helps produce an easier health care practice.

119

6. LESSONS LEARNED
(a) Physicians need more flexible and automatic sup-
port techniques to release them from the huge num-
ber of human tasks during the clinical health care:
Nowadays, along with the development of medicine science,
more and more medical devices are placed in the ward to
provide the information to assist in making decision. How-
ever, these devices provide an extra dimension of informa-
tion for physicians to process [6]. Physician can miss read,
miss interpret, mixed use the provided information or recall
incorrect knowledge to make a decision, during the increas-
ingly common case of continues long time stressing work.

For example, the work [29] shows that, although medical
staffs practice the best practice for cardiac arrest resusci-
tation, due to its urgent and infrequency on a daily basis,
medical staffs may be panic at the situation and miss sev-
eral warnings. Our experiments also support the conclusion
of the above work, and further show that current DSS does
not perform that much good when coming to complex prop-
erties, and recently developed computer technology needs
to be incorporated. We make use of runtime verification
technique, to release physicians from tremendous pressure
to relate the information contained in complex medical care
systems with temporal properties by semi-automated man-
ual vision inspection of current DSS.

(b) Easy to use interfaces are needed to facilitate
physicians to use formal verification: Computer tech-
nologies such as runtime verification and domain specifica-
tion language are totally new to physicians, we need user-
friendly interfaces to convince and facilitate physicians to
believe and use those techniques. Currently, it is not pos-
sible for physicians to pay extra efforts to learn those tech-
niques due to a huge amount of clinical works, we need to
reduce their work by hiding details of implementation tech-
niques and provide the least complex interface of scenario
description language DRTV.

For example, during the design of DRTV, we plan to use
syntax similar to java, which can be more easily connected to
the back-end MOP. but the physicians from Carle Founda-
tion Hospital thought that it is not easy for them to under-
stand and build the model. Hence, we reduce their efforts by
searching many description languages used in current medi-
cal DSS, and inherit some syntax from them with assigning
MOP related semantics. Also, the physicians suggest that it
would be better for us to provide some templates to translate
the property described in the medical best practice guide-
line to the property described for in DRTV in our future
work, which will facilitate their practice of our approach in
their health care practices. If the scenario modeling process
can be accomplished by automatical generation based on the
configuration of medical best practice guideline and devices,
it will be more fascistic for them.

(c) Actionable verification result is needed to facil-
itate physicians to use verification results: Addi-
tional notations and actions for explaining the verification
results are needed to make verification results more action-
able for physicians. In contrast to most ordinary applica-
tions that allow us to analysis the violations and figure out
which parts should be responsible for its violation, viola-
tions in medical care practice usually need timely response
of physicians. We have provided the handler construct for
the property description of DRTV.

7. CONCLUSION
In this paper, we propose a lightweight real-time data

based runtime verification technique for medical care prac-
tice. First, a user-friendly domain specific language DRTV
for specifying the real-time data and complex temporal prop-
erties of the medical care practice is designed. Based on the
DRTV model, a runtime verification technique is proposed
and formalized to strengthen the medical decision support
system. It combines formal methods in software engineer-
ing and practice guidelines in medicine to rigorous verify
runtime temporal properties automatically, and can be im-
plemented and plugged in existing medical support systems
to strength the health care.

Discussion: (1) According to the discussions with doc-
tors, the ptLTL property specification in DRTV model may
be easy for computer science staffs, but it is not easy for
medical staffs. It is better to provide some easier templates
and improve the user-friendly of the language. (2) We need
to develop more data interfaces to support more existing
decision support systems and medical devices. Then, prop-
erties on more complex scenarios with data from multiple
monitoring devices at the same time would be supported.
(3) Right now, the runtime verification is mainly focused on
those vital signs, we do not look into the pathophysiologi-
cal model of patient. If we combine the runtime verification
model with the organ automata of pathophysiology, more
complete verification results might be produced.

Acknowledgement
The authors thank Dr. Bobby and Dr. Hill at Carle Hos-
pital, Urbana, IL for their help with the discussion on med-
ical knowledge. This work is supported by NSF CNS 13-
30077, NSF CNS 13-29886, NSF CNS 15-45002, and NSFC
61303014.

8. REFERENCES
[1] D. Arney, M. Pajic, J. M. Goldman, I. Lee,

R. Mangharam, and O. Sokolsky. Toward patient
safety in closed-loop medical device systems. In
Proceedings of the 1st ACM/IEEE International
Conference on Cyber-Physical Systems, pages 139–148.
ACM, 2010.

[2] A. Bauer, M. Leucker, and C. Schallhart. Runtime
verification for ltl and tltl. ACM Transactions on
Software Engineering and Methodology (TOSEM),
20(4):14, 2011.

[3] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang,
J. Zhao, and X. Li. Toward online hybrid systems
model checking of cyber-physical systems’
time-bounded short-run behavior. ACM SIGBED
Review, 8(2):7–10, 2011.

[4] F. Chen and G. Roşu. Java-mop: A monitoring
oriented programming environment for java. In Tools
and Algorithms for the Construction and Analysis of
Systems, pages 546–550. Springer, 2005.

[5] P. A. De Clercq, J. A. Blom, H. H. Korsten, and
A. Hasman. Approaches for creating
computer-interpretable guidelines that facilitate
decision support. Artificial intelligence in medicine,
31(1):1–27, 2004.

[6] Y. Donchin, D. Gopher, M. Olin, Y. Badihi, M. R.
Biesky, C. L. Sprung, R. Pizov, and S. Cotev. A look

120

into the nature and causes of human errors in the
intensive care unit. Critical care medicine,
23(2):294–300, 1995.

[7] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud,
M. Ségura-Devillechaise, and M. Südholt. An
expressive aspect language for system applications
with arachne. In Transactions on Aspect-Oriented
Software Development I, pages 174–213. Springer,
2006.

[8] J. Fox, N. Johns, and A. Rahmanzadeh. Disseminating
medical knowledge: the proforma approach. Artificial
intelligence in medicine, 14(1):157–182, 1998.

[9] J. Fox, V. Patkar, and R. Thomson. Decision support
for health care: the proforma evidence base.
Informatics in primary care, 14(1):49–54, 2006.

[10] K. Havelund. Runtime verification of C programs.
Springer, 2008.

[11] A. Hommersom, A. Hommersom, P. Groot, P. Groot,
P. J. Lucas, M. Balser, and J. Schmitt. Verification of
medical guidelines using background knowledge in
task networks. Knowledge and Data Engineering,
IEEE Transactions on, 19(6):832–846, 2007.

[12] G. Hripcsak, P. D. Clayton, T. A. Pryor, P. Haug,
O. Wigertz, and J. Van der Lei. The arden syntax for
medical logic modules. In Proceedings/the... Annual
Symposium on Computer Application [sic] in Medical
Care. Symposium on Computer Applications in
Medical Care, pages 200–204. American Medical
Informatics Association, 1990.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In ECOOP 2001âĂŤObject-Oriented Programming,
pages 327–354. Springer, 2001.

[14] A. L. King, L. Feng, O. Sokolsky, and I. Lee. A modal
specification approach for on-demand medical systems.
In Foundations of Health Information Engineering and
Systems, pages 199–216. Springer, 2014.

[15] M. G. e. Lansberg. Antithrombotic and thrombolytic
therapy for ischemic stroke: antithrombotic therapy
and prevention of thrombosis: American college of
chest physicians evidence-based clinical practice
guidelines. CHEST Journal,
141(2 suppl):e601S–e636S, 2012.

[16] F. Laroussinie, N. Markey, and P. Schnoebelen.
Temporal logic with forgettable past. In Logic in
Computer Science, Symposium on, pages 383–383.
IEEE Computer Society, 2002.

[17] M. Leucker and C. Schallhart. A brief account of
runtime verification. The Journal of Logic and
Algebraic Programming, 78(5):293–303, 2009.

[18] T. Li, F. Tan, Q. Wang, L. Bu, J.-n. Cao, and X. Liu.
From offline toward real-time: A hybrid systems model
checking and cps co-design approach for medical
device plug-and-play (mdpnp). In Cyber-Physical
Systems (ICCPS), 2012 IEEE/ACM Third
International Conference on, pages 13–22. IEEE, 2012.

[19] T. Li, F. Tan, Q. Wang, L. Bu, J.-N. Cao, and X. Liu.
From offline toward real time: A hybrid systems model
checking and cps codesign approach for medical device
plug-and-play collaborations. Parallel and Distributed
Systems, IEEE Transactions on, 25(3):642–652, 2014.

[20] P. Lindsay, M. Bayley, C. Hellings, M. Hill,
E. Woodbury, S. Phillips, et al. Canadian best
practice recommendations for stroke care (updated
2008). Canadian Medical Association Journal,
179(12):S1–S25, 2008.

[21] H. Lu and A. Forin. The design and implementation of
p2v, an architecture for zero-overhead online
verification of software programs. Technical report,
Technical Report MSR-TR-2007–99, Microsoft
Research, 2007.

[22] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and
G. Roşu. An overview of the mop runtime verification
framework. International Journal on Software Tools
for Technology Transfer, 14(3):249–289, 2012.

[23] H. Mohammad, Y. Jiang, W. Poliang, B. Richard, and
S. Lui. Sink : A middleware for synchronization of
heterogeneous software interfaces. In ARM, 2015,
pages 1–6. ACM, 2015.

[24] M. Pajic, I. Lee, R. Mangharam, and O. Sokolsky.
Upp2sf: Translating uppaal models to simulink.
University of Pennsylvania, Tech. Rep, 2011.

[25] M. Pajic, R. Mangharam, O. Sokolsky, D. Arney,
J. Goldman, and I. Lee. Model-driven safety analysis
of closed-loop medical systems. Industrial Informatics,
IEEE Transactions on, 10(1):3–16, 2014.

[26] V. L. Patel, V. G. Allen, J. F. Arocha, and E. H.
Shortliffe. Representing clinical guidelines in glif.
Journal of the American Medical Informatics
Association, 5(5):467–483, 1998.

[27] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu.
Hardware runtime monitoring for dependable
cots-based real-time embedded systems. In Real-Time
Systems Symposium, 2008, pages 481–491. IEEE,
2008.

[28] S. Quaglini, P. Ciccarese, G. Micieli, and A. Cavallini.
Non-compliance with guidelines: motivations and
consequences in a case study. Studies in health
technology and informatics, 101:75–87, 2003.

[29] N. Strzyzewski. Common errors made in resuscitation
of respiratory and cardiac arrest. Plastic Surgical
Nursing, 26(1):10–14, 2006.

[30] O. Young, Y. Shahar, Y. Liel, E. Lunenfeld, G. Bar,
E. Shalom, S. B. Martins, L. T. Vaszar, T. Marom,
and M. K. Goldstein. Runtime application of
hybrid-asbru clinical guidelines. Journal of biomedical
informatics, 40(5):507–526, 2007.

121

