
Safety-Assured Formal Model-Driven Design
of the Multifunction Vehicle Bus Controller

Yu Jiang1(B), Han Liu1, Houbing Song2, Hui Kong3, Ming Gu1,
Jiaguang Sun1, and Lui Sha4

1 TNLIST, KLISS, School of Software, Tsinghua University, Beijing, China
jiangyu198964@gmail.com

2 Department of Electrical and Computer Engineering, West Virginia University,
Morgantown, USA

3 Institute of Science and Technology Austria, Klosterneuburg, Austria
4 Department of Computer Science, UIUC, Champaign, USA

Abstract. In this paper, we present a formal model-driven engineering
approach to establishing a safety-assured implementation of Multifunc-
tion vehicle bus controller (MVBC) based on the generic reference models
and requirements described in the International Electrotechnical Com-
mission (IEC) standard IEC-61375. First, the generic models described
in IEC-61375 are translated into a network of timed automata, and some
safety requirements tested in IEC-61375 are formalized as timed compu-
tation tree logic (TCTL) formulas. With the help of Uppaal, we check
and debug whether the timed automata satisfy the formulas or not.
Within this step, several logic inconsistencies in the original standard
are detected and corrected. Then, we apply the tool Times to generate
C code from the verified model, which was later synthesized into a real
MVBC chip. Finally, the runtime verification tool RMOR is applied to
verify some safety requirements at the implementation level. We set up
a real platform with worldwide mostly used MVBC D113, and verify
the correctness and the scalability of the synthesized MVBC chip more
comprehensively. The errors in the standard has been confirmed and the
resulted MVBC has been deployed in real train communication network.

1 Introduction

The train communication network (TCN) enabling secure and fast data transmis-
sion in the entire rail vehicle has been standardized by the international railroad
union and the International Electrical Commission, as presented in the inter-
national standard IEC-61375 [3]. Within the network, the multifunction vehicle
bus controller (MVBC) is defined as a typical embedded software used mostly
for the control of data transmission among the equipment (the traction con-
trol unit, air brake electronic control unit and door control unit etc.) onboard of
each individual vehicle. Detail functions of the MVBC are based on the real-time
protocol (RTP), which defines the rules (master-slave communication principle,
data frame format and timing requirements, etc.) for process data and message
data transmission.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 757–763, 2016.
DOI: 10.1007/978-3-319-48989-6 47

758 Y. Jiang et al.

Traditionally, from the perspective of industrial practice, most companies
such as Siemens and Duagon develop their MVBCs by directly writing under-
lying C and VHDL code manually according to the description of IEC-61375,
accompanied with the complex system and physical testing to avoid defects.
Increasingly developed modern railroad vehicles increased the functional com-
plexity, and are more difficult to ensure the correctness through testing. For
example, even the most widely used D113 MVBC of Duagon company contains
some dead logic in the C code for process data communication. From the per-
spective of academia, there are many existing works for the design of MVBC,
but mainly focusing on the novel implementation hardware architecture [5]. In
[5], they propose to use materialization of slave nodes for MVBC in a single
chip by using reconfigurable logic. In [11], they propose to use BeagleBone and
some existing tools such as Simulink to implement the MVBC, which is start-
ing from model construction and ending in programming according to the vali-
dated model. Most of them focus on the functional implementation and do not
pay attention on safety assurance under dynamic physical environment. Besides,
there are also some works about verifying the real time communication protocol
of TCN [6], they do not cope with the implementation issue neither, they focus
on the logic correctness of train communication protocol only. Little research
has been conducted to address the safety issue of MVBC, and some failures of
the communication function have been reported to result in the accidents of the
railway and trains [12], and some cases with serious injuries of human.

In this paper, we collaborate with the researchers from China Railway Rolling
Stock Corporation (CRRC), and use formal model-driven development approach
to establishing a safety-assured implementation of an MVBC prototype based on

Uppaal
Model

Uppaal
Verification

Times Code
Generation

Uppaal
Model

Revision

No
Generated

Code

Yes

IEC-61375-1

IEC-61375-2

Model
Verifiable

Requirement

Implementation
Verifiable

Requirement

Runtime
Verifier

System
Integration

Executable
System

Handwrite
Glue Code

Safety-A
ssured

D
esign

Fig. 1. Safety-assured design of MVBC. We may also replace these tools with similar
functional tools such as SPIN and RV-Monitor. If we use SPIN to replace Uppaal, we
need to build the SPIN Promela model instead of Uppaal timed automata model.

Safety-Assured Formal Model-Driven Design 759

the standard IEC-61375, which consists of two parts: IEC-61375-1 describing the
architecture and functional behaviors of MVBC, and IEC-61375-2 describing the
conformance testing requirements. The overall procedure is presented in Fig. 1,
where we leverage the formal modeling and verification technique as follows (1)
the generic models and requirements in the standard are formalized as Uppaal
timed automata and TCTL expressions [2] respectively, (2) formally verify the
requirements and debug the models with Uppaal until the timed automata sat-
isfies the TCTL expressions, (3) generate C code from the verified model with
Times [1], which can be compiled and synthesized into a real MVBC chip with
some auxiliary code developed to interface with hardware, and (4) use runtime
verification to formally verify some implementation level safety requirements and
test the consistency between the execution of the integrated system and the sim-
ulation of the verified model with RMOR [4]. Then, we set up a real platform,
connecting the synthesized MVBC prototype for safety assured communication
demonstration. During the practice, the errors detected in the standard has
been confirmed and the synthesized prototype has been in productization and
deployed in real train system control.

2 Safety-Assured Approach

Model construction and verification: First, we build a network of timed
automata for the MVBC according to the architecture and functional descrip-
tion, such as the generic automata model, the function and action table, and
the SDL (Specification and Description Language) diagram of IEC-611375-1.
All these heterogeneous information are unified translated and encoded into the
network of timed automata manually. Currently, it is not easy to automatically
abstract the timed automata model from the text-based standard, and the whole
construction procedure is manually accomplished and validated with the help of
engineers from CRRC with the following modeling guidance rules.

Let us see the translation of generic automata and the accompanied function
table. Each state in the generic automata is mapped to an ordinary location in
Uppaal with the same name. For the packets of sending and receiving events with
actual parameters specified for the control fields, we use the synchronous channel
of Uppaal timed automata to simulate the communication. Because there are lots
of none interrupt actions and packets associated with a single generic state while
only one synchronous action is allowed to be attached in a single transition of
Uppaal timed automata, we need to create a set of committed locations, where
none interrupt actions are sequentially encoded into the transitions among those
committed locations. Then, the attached actions described in the function table
of the standard, they are translated into the accompanied actions of the Uppaal
timed automata transition.

For the translation of SDL diagram, each state in the diagram is mapped to
an ordinary location of Uppaal. Some plain C codes in the diagram are translated
into the action attached on the transition of two locations. The event signal of
SDL diagram is modeled by the synchronous channel of timed automata, where

760 Y. Jiang et al.

receiving an event is denoted as Rcv Channel Name? and sending an event
is denoted as Send Channel Name!. In case of situations with more than two
signals between two states, we need to add some intermediate locations of timed
automata. Note that, for the clock signal, it is issued by itself. Hence, we do not
need to translate it into a synchronous channel.

Safety Requirements Formalization: The MVBC safety requirements are
mainly derived from the descriptions of the MVBC conformance testing require-
ment of IEC-61375-2. We divide the testing requirement into two groups: model
verifiable safety requirement and implementation verifiable safety requirement.

Those requirements that are related to general functions of control logic
and independent of platform are categorized as model verifiable safety require-
ments. We formalize them as timed computation tree logic formulas defined
on the formal timed automata, and verify them in Uppaal. For example,
the requirement that there is at most one regular master MVBC contained
in the train communication network, is a typical model verifiable safety
requirements, and can be formalized as A[]not(MVBC(1).Regular Master
&&MVBC(2).Regular Master).

Those requirements related with dynamic runtime situation and uncertain
environment are categorized as implementation verifiable safety requirements.
They are not easy to be defined in the abstract timed automata level, because
it is not easy to model dynamic transmission delay of data on MVBC bus and
dynamic processing delay of hardware platform, even with a preliminary chan-
nel model and clock variable in Uppaal timed automata. We formalize these
safety requirements as the runtime verification property of RMOR. We define
some events based on the variables of the generated C code of Times, which are
configured to I/O pins of the real hardware platform and will be continuously
loaded by accompanied C functions. Then, the property and the accompanied
C functions are transformed and input to RMOR to get the instrumented code,
which can be made as an integral part of the target generated system, verify-
ing and guiding its execution within the dynamic environment. For example,
the requirement that he suggested time constraint on a master MVBC between
the finish of a master frame sending and the start of a response slave frame
receiving should be less than 42.7us is a typical implementation verifiable safety
requirements, and can be formalized as below:

DataCenter Monitor TimeConstraints (){
event TimeoutResponse =
((T Master Send − T Slav Rece ive)<42.7)

event Tr igger = TimeoutResponse ;
s t a t e s a f e {When Tr igger −> e r r o r ;}

}
Listing 1.1. Runtime Property Definition for the Time Interval.

Code synthesis and verifier integration: For the code synthesis, automati-
cal code generation tools such as Times can be applied to reduce the hard work

Safety-Assured Formal Model-Driven Design 761

efforts of manual implementation, which is also more human error prone. For
example, the engineers from the industrial sources (the Duagon company, the
China CR corporation) report that their MVBC is developed by directly writing
underlying C or VHDL code manually, where there are still some bugs such as
dead logic or dead code. Besides, the automatical code generation also facilitate
the traceability between the model and implementation, which results in better
documentations and easier maintains.

Before applying the code generation algorithm, we need to do some changes on
the formalmodel.More specifically, we construct and initialize the timed automata
template for two or more MVBCs for comprehensive verification, and now need to
isolate the timed automata of a single MVBC for code synthesis. One way for iso-
lation is to build a general environment model, which is ready to receive any out-
put synchronization action from the isolated MVBC and send input synchroniza-
tion action to the isolated MVBC. Then, we can generate execution code for both
MVBC and the general environment, and manually separate the generated code.
Another way for isolation is to do some reverse engineering, where the synchroniza-
tion channels denoting the packets of sending and receiving events are reversed to
the general variable. For example, a synchronization channel rcv connect req? can
be replaced by a declaration of boolean variable rcv connect req. Meanwhile, an
evaluation expression rcv connect req == true should be added to the guard seg-
ment, and an assignment expression rcv connect req := true should be added to
the action segment. We use the second way, because it can be automatically accom-
plishedbyparsing andupdating theXMLfile of the timedautomatamodel, and the
second isolation way is more closed to the real operation scenario where the send-
ing and receiving packets from the physical bus is asynchronous. Besides, because
the generated code is tightly coupled, the manually separation is more error prone.

After that, we also need to add some glue code, which is mainly used for
two functionalities, the interface between the software and hardware platform,
and timing implementation of the generated code on the hardware platform. For
interface, we just need to initialize some configure mapping files, mapping the
variable of software to the GPIO of the hardware platform. Accompanied type
conversion functions may be needed. For clocks, let sc be a global system clock.
For each clock x in the timed automata, let xreset be an integer variable holding
the system time of the last clock reset. The value of the clock is then (sc−xreset),
and a reset can be performed as xreset := sc.

Finally, based on the generated code and the handwriting glue code, we input
the formalized implementation verifiable safety requirement and the integrated
code to RMOR to generate the runtime verifier, and the system integration
is instrumented with the verifier for the runtime verification. The integrated
verifier keeps verifying the safety requirements on the running executable system.
To improve the safety confidence, we can also formalize some model verifiable
requirement into verifier, but will increasing the storage overhead of the system.

762 Y. Jiang et al.

Table 1. Resource utilization C compilation for MVBC, and the verification efficiency.

C compilation Safety-Assured BeagleBone

Binary File Size KB 302 683

Bug in IEC Standard Detected 6(verification) 1(Simulink Design Verifier)

Injected Division by Zero Detected 10/10(verification) 4/10(Simulink Design Verifier)

3 Experiment Results

To evaluate the effectiveness of the proposed approach, we apply it to the design
of MVBC and compare it with BeagleBone [11], which is the most recently
available design framework for MVBC based on Simulink. More specifically, we
formalize 92 critical model verifiable safety requirements and 29 critical imple-
mentation verifiable safety requirements. During the verification process of the
proposed approach, 11 requirement violates in the model or the implementation
level. After discussion with the engineers from CRRC, 5 requirements are vio-
lated because of the error brought by our modeling behavior, and 6 requirements
are violated because of the error of the control logic described in the standard.
While in the verification process of BeagleBone, only one violation is detected
due to the limited specification and verification of Simulink Design Verifier. For
the second type of violation, we need to revise the timed automata model as well
as the back end IEC standard according to analysis results of counter examples.
Besides, these violations are consistent to existing works [7–10] and have already
been confirmed and would be revised in the new version of IEC standard 61375.
After revision, both the model level verification and the runtime verification
reports no violation (Table 1).

Then, the generated code according to the revised model and the integrated
executable system with the eCos (Embedded Configurable Operation System)
is synthesized. Then, the synthesized binary files for the integrated C code can
be loaded and run on ARM7-STM32F407IGH6 processor. The binary file is
302 kb and 683 kb for the code generated by Times and BeagleBone respectively.
The difference is mainly derived from the fact that BeagleBone use Simulink C
code generator to generate many extra configuration files and introduces many
libraries for scalability. To test the reliability of the system as well as some
requirements that can not be formalized, we connect the widely-used industrial
product MVBC card D113 with our synthesized MVBC for real-time communi-
cation. We use the application running on the industrial computer to monitor
communication, and read the message data from memory. It shows that the
communications confirm to the requirements defined in the part two of standard
IEC 61375.

4 Conclusion

In this paper, we present a formal model-driven engineering approach to
establishing a safety-assured implementation of MVBC based on the generic

Safety-Assured Formal Model-Driven Design 763

reference models and requirements described in the International Electrotech-
nical Commission (IEC) standard 61375. The design part mainly includes for-
mal model construction, code generation and integration, and the safety-assured
part mainly includes model level verification and implementation level verifica-
tion. During the engineering practice, several logic inconsistencies in the original
standard are detected and corrected.

Acknowledgements. This research is sponsored in part by NSFC Program
(No. 91218302, No. 61527812), National Science and Technology Major Project
(No. 2016ZX01038101), Tsinghua University Initiative Scientific Research Program
(20131089331), MIIT IT funds (Research and application of TCN key technologies)
of China, and the National Key Technology R&D Program (No. 2015BAG14B01-02),
Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23.

References

1. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES b— A tool
for modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002).
doi:10.1007/3-540-46002-0 32

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

3. International Electrotechnical Commission et al.: IEC 61375-1, Train Communica-
tion Network (2011)

4. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68524-1 3

5. Iturbe, X., Zuloaga, A., Jiménez, J., Lázaro, J., Mart́ın, J.L.: A novel SoC archi-
tecture for a MVB slave node. In: IECON 2008. IEEE (2008)

6. Jiang, Y., Gu, M., Sun, J.: Verification and implementation of the protocol stan-
dard in train control system. In: IEEE 37th Annual Computer Software and Appli-
cations Conference (COMPSAC), pp. 549–558 (2014)

7. Song, H., et al.: Data-centered runtime verification of wireless medical cyber-
physical system. IEEE Transactions on Industry Informatics (2016)

8. Yang, Y., et al.: From stateflow simulation to verified implementation: a verification
approach and a real-time train controller design. In: 2016 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS) (2016)

9. Zhang, H., et al.: Design and optimization of multi-clocked embedded systems
using formal technique. IEEE Trans. Ind. Electron. 62(2), 1270–1278 (2014)

10. Jiang, Y., et al.: Design of mixed synchronous/asynchronous systems with multiple
clocks. IEEE Trans. Parallel Distrib. Syst. 26, 2220–2232 (2014)

11. Aarthipriya, R., Chitrapreyanka, S.: FPGA implementation of multifunction vehi-
cle bus controller with class 2 interface and verification using Beaglebone Black
(2015)

12. Yunxiao, F., Zhi, L., Jingjing, P., Hongyu, L., Jiang, S.: Applying systems thinking
approach to accident analysis in China: case study of “7.23” Yong-Tai-Wen high-
speed train accident. Saf. Sci. 76, 190–201 (2015)

http://dx.doi.org/10.1007/3-540-46002-0_32
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-540-68524-1_3

	Safety-Assured Formal Model-Driven Design of the Multifunction Vehicle Bus Controller
	1 Introduction
	2 Safety-Assured Approach
	3 Experiment Results
	4 Conclusion
	References

