iDola: Bridge Modeling to Verification and
Implementation of Interrupt-driven Systems

Han Liu*, Hehua Zhang*, Yu Jiang, Xiaoyu Song!, Ming Gu* and Jiaguang Sun*
*School of Software Tsinghua University, TNLIST, KLISS, Beijing, China
TDepartment of Computer Science and Technology, Tsinghua University, TNLIST, KLISS, Beijing, China
iDepartment of ECE, Portland State University, Oregon, USA

Abstract—In real-time embedded applications, interrupt-
driven systems are widely adopted due to strict timing require-
ments. However, development of interrupt-driven systems is time-
consuming and error-prone. To conveniently ensure a trustworthy
system design and implementation is a challenging problem,
especially in complex applications. In this paper, we present a
novel domain-specific language called iDola to model interrupt-
driven systems declaratively and concisely. A major strength of
iDola is the feasibility to capture complex interrupt handling
mechanism in real-time operating systems and target platforms,
such as delayed service and buffered processing. We also propose
the formal operational semantics and code generation algorithm
of iDola, so that iDola models can be transformed to timed
automata for verification and loaded to generate platform-specific
codes. We apply iDola on the modeling of an industrial interrupt-
driven system, multifunction vehicle bus controller which runs in
an embedded environment with eCos operating system. Based on
iDola, the system is modeled with a dispatcher which embodies
advanced interrupt handling in eCos, including buffered interrupt
service routine and deferred service routine. Through transfor-
mation, the system design is verified and design bugs are detected.
Code generation is also executed using the proposed algorithm.
Generated codes display comparatively equal performance in the
real system. We believe iDola can facilitate building a trustworthy
interrupt-driven system.

Keywords—Interrupt-driven system; Domain-specific language;
Interrupt handling

I. INTRODUCTION

It is no exaggeration to say that timing is the air of embed-
ded world. Like we human need fresh air, timing constraints
are the first priority in many embedded systems, especially
safety-critical ones. This common knowledge explains why
interrupt-driven mechanism is widely applied in industry. An
interrupt-driven system(IDS) processes specific input from the
environment as interrupts so that urgent tasks can be serviced
as soon as possible. As a result, the difficulty of achieving the
expected timing is largely reduced.

However, due to the asynchronous nature of interrupts
which may lead to various interleaving executions, IDS are
error-prone, especially in complicated applications. Hazard in
an IDS comes from three aspects. The first is the unpredictable
source, which may generate any interrupt at any time during
the execution. Another is the complex interrupt handling
mechanism of the real-time operating system(RTOS) and target
platform. Unexpected execution paths are likely to be produced
to cause failures under such mechanism. The third is the poorly
implemented interrupt handler, which is incapable of providing
the correct service for interrupts. Thus, it is both challenging

and essential to control the three risks. From the practical
view, the characteristics of interrupts post requirements on
expressiveness and semantics of system modeling language.
The expected situation is that IDS can be modeled in a
straightforward manner with complex interrupt mechanism
captured. Yet, existing solutions are insufficient to achieve
these two goals at the same time. Strict formal methods with
accurate interrupt semantics are inconvenient to build the entire
system. On the other side, expressive modeling approaches,
which guarantee rapid system design, are incapable to maintain
full mechanism of interrupts. Thus, we present our work to
narrow the gap between these two conflicting requirements so
that modeling of IDS is better supported.

In the global picture of model-driven engineering(MDE),
verification and code-generation are conducted based on mod-
els so that trustworthy codes are produced in the target ap-
plication. However, for embedded IDS, verification is difficult
due to the shortage in modeling. Moreover, the state space
may be huge due to complex interrupt scenarios. On top of
that, code-generation is also strictly required because of the
limited computation resource. In another word, for current
solutions, it is infeasible to acquire acceptable performance
on both verification and code-generation of IDS.

To conquer the limitations above and enhance the engi-
neering of IDS, we propose a novel approach in this paper,
which smoothly bridges modeling to both verification and
implementation. Contributions of our work are:

1) A declarative domain-specific language(DSL) along
with formal semantics, called iDola, to assist rapid
and complex design of IDS. With iDola, schedulers,
sources and interrupt handlers can be easily specified.
Apart from classical interrupt mechanism, iDola is
capable of modeling complex handling of RTOS
and runtime platform, including delayed process and
buffered service routines. Besides, system config-
uration is well supported for different application
platforms.

2) A complete model transformation scheme from iDola
to timed-automata(TA). The transformation is defined
on pure iDola models without extra adjustment so that
verification is feasible based on the same models as
in modeling phase.

3) A non-intrusive code-generation method to produce
executable application codes. Majority of the gen-
eration is automated with interfaces provided for
developers to add platform specific information. The

generated codes can be directly used in the target
application without any modification.

The rest of this paper is organized as follows: related work
is introduced in section II. Section III presents the modeling,
verification and code-generation of IDS with iDola in detail.
In section IV, case studies on multiple systems with different
scales are exhibited to show how iDola works for real-life
applications. Section V gives a conclusion of our work.

II. RELATED WORK

Modeling and analysis of IDS are the top priority in
the engineering of real-time embedded applications(RTEA).
In practice, interrupt handling is dependent on the source
of interrupts, scheduling and dispatching mechanism, and the
handler program. Thus, a major task to model IDS is to fully
capture dynamic features of the three aspects. With the system
model, analysis is responsible for uncovering design defects
in the handler programs due to incorrect implementations and
incomaptibility with the execution platform.

Formal methods and techniques, which can facilitate com-
plete analysis and verificatioin, are leveraged to model in-
terrupt mechanism. Hoare has defined a Communicating Se-
quential Processes(CSP) representation for interrupt behavior
in [8], while algebra of communicating processes(ACP) is used
in [12] to capture prioried and non-deterministic nature of
interrupts. Bérard introduced Interrupt Timed Automata(ITA)
[2], which is suited to the description of multi-task sys-
tems with interruptions in a single processor environment.
Reachability problem and real-time properites are verified
in [3] and [1]. In [11], a formal model of interrupt-driven
programs with operational semantics is proposed from a timing
perspective, so that analysis over time properities is feasible
during development of such programs. The model is small but
efficient in depicting crucial timing features of the system.
In contrast to iDola, interrupt nesting is not supported in
the proposed language and model. Based on [11], the author
presents denotational semantics of interrupt-driven programs
in [10]. The denotational semantics can be linked with the
operational senmantics so that timing analysis can be done to
ensure reliability of the system. Furthermore, a formal model
as an extenstion of Dijkstra’s language of guarded commands
is proposed in [24]. The model has probabilistic operational
semantics to handle randomicity and nonderminism. In order to
model nested interrupts together with an interrupt environment,
[17] presents controller automata. Occurrence of interrupts
are realized as a sequence of transitions with time. A major
advantage of controller automa is the ability to run simulation
at model level. In [13], a framework is provided to model
and evaluate preemptive scheduling of interrupts in terms of
efficiency. Both synchronous and asynchronous events can be
captured in high-level model. Moreover, interrupts is modeled
as a form of interaction in [23] so that interrupt features
including preemption and nesting are constructed as early as
possible. Special operations such as enabing and disabling of
interrupts, are modeled with a markov state transition diagram
in [15] for performance analysis. Compared to iDola, works
mentioned above focus on the interaction between interrupt
handlers and a simple scheduler. They do not concern complex
interrupt handling mechanism.

As for the analysis of IDS, stack overflow, interrupt
overload and real-time properties are listed as problems in
interrupts [18]. Timing analysis is performed using bounds
on the number of context switches [14]. [4] presents a static
checker for Z86-based software with hard-time requirements.
Interrupt latencies, stack size, as well as fundamental safety
and liveness properites are verified by the checker. Further-
more, they presents a tool to analyze deadlines of interrupt
handlers [5]. Main contribution of the tool is to significantly
reduce efforts of testing without decrease on precision. In [9],
an abstract formal model is proposed to represent AUTOSAR
OS programs with timing protection for deadline analysis. In
addition, as a common problem caused by interrupts, data race
is also widely analyzed in [7][22][16][21][6]. [7] proposes to
generate interrupts to test access point. [22] exhibits a tool
to analyze conflicting shared memory access with a lable-
ing scheme. [16] converts interrupt handlers to multi-thread
programs for detection while [6] analyzes the data flow to
search races. Besides, Regehr compares the difference between
interrupt and thread, then proposes a verification through
transformation [19]. [20] presents an abstraction technique
to reduce the state space, so that large-scale verification is
possible. These methods share the idea that they are applied
on source codes while iDola advances analysis to the design
phase and is available for complex real-time environment with
operating system and target platform.

III. BUILD A SYSTEM WITH IDOLA

For embedded IDS, manual coding is time-consuming and
error-prone. On top of that, programs have to be compiled
and transplanted to the target platform for execution. To
simplify this process and ensure the trustworthiness of the
system, common practice is MDE. However, to support rapid
system design and implementation in MDE is a challenging
issue. To address this problem, we present iDola, a domain-
specific modeling language which provides higher abstraction
for system constructs, to build an IDS. The development
process is shown in Figure 1.

verification redesign

add platform-specific
iDola iDola information iDola
graphical model code generator

simulation redesign

iDola
simulator

Fig. 1: Development process with iDola

Executable code in
the target platform

With iDola, a system is modeled graphically. The iDola
model can be loaded for simulation and transformed to timed
automata so that verification can be done by Uppaal. Once
functional correctness is ensured in model-level, developers
can manually attach platform specific information to the model
and automatically generate executable codes in the target
platform. We implement an iDola development tool which
includes design module, simulator, model transformer and code
generator.

A. iDola Model

M == (Var*,is*, Source™, Dispatcher, ISR™, DH*, App*)
Source ::= source{is*, pattern*}
pattern ::=not? start is | not? end is | is not? follow is |
is not? interrupts is
Dispatcher ::=dispatcher{Var*, Pri, B, Q, Pre, Post, D}
Pri ::= priority{is = (NUM, NUM)}*
B ::=buffer{capacity = NUM}
Q) ::i=queue{capacity = NUM }
Pre, Post := (pre, post){ CFG}
D = (is —{name [buffer=NU M][, name]})"
ISR ==isr name{Var* mask?, CFG unmask?—call name}
DH ::=dh name{Var*, CFGunmask?}
App =app name{Var*,CFG}
CFG == Action*
Action ::= stmt|stmt; stmt|if cond then Action else Action|
while cond do Action|invoke name

Fig. 2: Syntax of iDola

The syntax of iDola is partly listed in Figure 2. An iDola
model is consisted of seven categories of constructs: shared
data(Var), interrupts defined in the system(is*), interrupt
source(Source), Dispatcher, interrupt service routine(I S R),
delayed handler(DH), application routine(App). A Source
contains a sequence of interrupt signals(is) and a list of
patterns which specify constraints on interrupt signals. Four
types of constraints are supported in iDola for depicting the
start, end, follow and interruptive relationship of the signal
sequence. A Dispatcher is responsible for registering in-
terrupts and dispatching them to corresponding handlers. It
includes a name, local variables, priority(Pri) assignments,
a buffer(B) to assemble [SRs, a queue(Queue) to store
DHs, initialization and completion actions when registering
interrupts(Pre and Post), and the dispatching behavior(D).
In D, we can attach handlers including buffered /SR and
prioritized DH to interrupts. As a major strength of iDola,
the capability of modeling a complex Dispatcher makes it
feasible to capture extensive interrupt processing features in
different platforms. For instance, the configuration of buffer
supports the design of ISR assembling, which posts a big
DH for multiple 1.5 Rs to reduce invoking costs. Furthermore,
specification on capacity of queue and priorities of DHs can
be used to control the delayed processing. An analogy is the
deferred service routine(DSR) and marcro of DSR table size in
the real-time operating system eCos. Moreover, ISR, DH and
App are similar constructs with local variables and a control
flow graph(C'F'7), except that ISR and D H can execute mask
or unmask actions for interrupts. CF'G is defined as Action
sequence, which is a combination of basic statement(stmt),
sequential statement(stmt; stmt), branch structure, loop struc-
ture and invoking statement.

In order to simulate and analyze the iDola model, we
present its operational semantics. The configuration is repre-
sented as a tuple (M, intr,6,%), where

M is an iDola model.

e intr € {is*} specifies interrupt signals captured by
the system.

e €O, where © =N U{Start, Exit, L} represents
locations in the control flow graph. N denotes graph
nodes. Start and Exit are entrance and exit of the

graph respectively. L is placeholder if no graph is
attached to the current component.

e Y £ Var* — R is a set of states, each of which
is defined by the collection of values of all system
variables, including a ISR stack and a FIFO DH
queue.

For the descriptive convenience, we introduce several aux-
iliary formulas. out is used to specify interrupts generated by
Source. Calls to out get the arrived interrupt. If no interrupts
occur, it returns nothing. cfg is used to acuire the CFG of
an ISR, DH or a given graph location. isr and dh return
corresponding ISRs and DHs for specific interrupts. loc
reports the current CF'G location while next steps to a next
node in CFG. pri gets the priority of an interrupt. head
is used to get the first DH in Queue. nextIntr returns a
following interrupt to be serviced, which is implemented as a
combinational calculation over the out function, ISR stack
and DH queue. With the model configuration and proposed
formulas, operational rules of iDola are listed in Figure 3.

out(Source®)=intr
(Dispatch) (M6, L,5)—(M,intr,6" 5)
L, cfg(isr(intr)) =L
where ¢ = - ofg(())
Start, cfg(isr(intr)) #L
T. out(Source*)=intr
(Mask) (M,intr,0,5) = (M, intr,0,5)
(Execute) out(Source®)=¢
(M, intr,8,X)—(M,intr,next(§),x")
out(Source*)=intr' Apri(intr’)>pri(intr)
(Pree]’[lptil)]’l) (M, intr,0,2)—(M,intr’ 07, X")
L, cfg(isr(intr’)) =L
where 6 = - ofeg(()) ,
Start, cfg(isr(intr’)) #L
- out(Source”)=intr’ Apri(intr’)<pri(intr)
(Suspension) (M, intr,0,5) — (M, intr,8.57)

f=Ezitrdh(intr)#¢
(ﬂ;(,:,n,tr.ﬂ._EQ—)(:‘U._intr_.ﬂi}’)
out(Source”)=¢A¥B(cfg(B)Ecfg(isr(is®))AB#£N)
(M,intr,6,2)—(M,head(),#’,X)

1, efg(dh(head())) =L
Start, cfg(dh(head())) #L
out(Source”)=¢pA0=Exit

(M ,intr,Ezit,X)— (M nextIntr(),0’ ')
where 0’ = loc(cfg(nextIntr()))

Delayed post
) I

(Delayed process)

where ¢ =

(Completion)

Fig. 3: Operational semantics of iDola

Explanations on the formally-defined operational semantics
are as follows:

1) Dispatch. Once an interrupt signal is produced and
no other signals are present, the Dispatcher starts to
service that interrupt and turns to the corresponding
ISR. If the ISR is not empty, its Start node is
activated. Otherwise, it remains idle.

2) Mask. During the processing of an interrupt, same-
type interrupts generated by Source are ignored.
Location in CF'G and system state are not affected.

3) Execute. When no interrupts occur, the running
component executes a step in its CF'G.

4) Preemption. When Source generates an inter-
rupt with a higher priority than the current one,
Dispatcher saves the context and switches to the
high-priority interrupt. Its C'F'G is then activated.

5) Suspension. In contrast to Preemption, newly
generated interrupt with a lower priority is stored and
suspended in Dispatcher.

6) Delayed post. When an ISR completes and it is
associated with a DH, the DH is posted to a queue
for delayed handlers.

7) Delayed process. When no interrupts occur and
executions in all IS Rs are completed, Dispatcher
begins to launch delayed process from the first han-
dler in Queue and activates the corresponding CF'G.

8) Completion. An execution is completed if CFG
reaches the FEzit node. Without new interrupts,
Dispatcher starts to service next stored interrupt.
The C'FG resumes to a historical location if inter-
rupted previously, or it starts from the beginning.

L Source

source

O]

App_A Dispatcher
dispateher

D :P_P
int flag=0; isrISR_A{
source{ mask A;
A flag=1,
start A; call DH_A
} }
dispatcher{ dh DH_A{
int count=0; /*process code*/
buffer{capacity=3}, invoke App_A;
queue{capacity=5}; unmask A;
task=Main; }
interrupt=A invoke ISR_A{ app App_A{
count=count+1, int MSG1=0ON_MSG;
} int MSG2=0FF_MSG,;
}
app Main{ if flag==1 then
f*codes for main task*/ display MSG1;
1 else
display MSG2;

Fig. 4: A simple iDola model

A simple iDola model is presented in Figure 4, with
graphical representation and textual code. In the example, a
main thread Main is running when no interrupts occur. Only
one interrupt A is defined. The ISR_A services A by writing
a global shared data flag. Then ISR_A passes service to a
delayed handler D H_A, which does a part of jobs and invokes
App_A for further process.

B. Verification support

Due to possible interleaving execution paths, IDS is error-
prone, especially in RTEA with complex interrupt handling
mechanism. Common faults such as data race, memory leak,
may result from inappropriate priorities, unprotected access
control, poor flow design of interrupt service and so on. In
order to uncover design defects and violations on specific
properties, we propose a transformation from iDola to timed
automata, so that verification techniques can be applied. We
use the example in Figure 4 to illustrate the transformation.

mask_A = true

(a) Source

(b) Dispatcher (c) App

Fig. 5: Transformation to timed automata

As in Figure 5, the proposed transformation is feasible
to all the modeling constructs in iDola. In (a), Source is
represented as an automata with self loops. An interrupt is
generated through a transition. Dispatcher is translated as
a single-state template in (b). In the template, we use one
transition to capture interrupts from Source. The dispatching
of handlers and normal task is modeled as a pair of transitions,
referring to launch and termination. A ISR stack and a DH
queue are implemented in the template. Operations of stack
and queue are translated as transition actions. When an ISR
is invoked, it pushes the corresponding interrupt identifier in
the stack. At the completion of an ISR, it pops identifier
out of the stack and insert its DH into the queue if it is
associated with one. Operations of interrupt mask and unmask
are denoted as assignments to local variables. Moreover, (c)
exhibits an App in timed automata, it is a representation of its
CFG which synchronizes with Dispatcher at the beginning
and end transitions. As App, ISR and DH share the same
transformation, where C'F'G is translated into timed automata.
Through the proposed transformation, systems specified in
iDola can be verified to expose poor designs.

C. Code Generation

Code generation is another strength of iDola, which not
only improves development efficiency, but also narrows the
gap between system model and the target platform.

In design and simulation of iDola models, system behavior
is depicted mostly by simple assignment statements, such as
x =1 or y = x + 3. However, in real complex applications,
specific functions are often implemented by calling platform-
specific APIs like arm_send_frame(data). To absorb these
APIs in the generated codes, we support statements binding
between model statements and corresponding implementations.
Developers manually do the binding so that code generation
can be launched. The algorithm of code generation is exhibited
in Algorithm 1, 2 and 3.

Algorithm 1 displays the procedure to generate the whole
IDS. Except Source component which is an abstraction of
environment, other components including shared data(Var),
Dispatcher, ISR, DH and App are generated in turn.

Algorithm 1 Generate an IDS

function SYSTEMGENERATE(S)

VarGenerate(S.Var);

DispatcherGenerate(S.dispatcher);

for each isr € S.ISR do
generate_ISR(is7);

for each dh € S.DH do
generate_ DH(dh);

for each app € S.App do
generate_App(app);

Code generation of Dispatcher is displayed in Algorithm
2. The first step is to generate local variables. Then initializa-
tion operations specified in Pre are generated to codes based
on the C'F'G. Registration is generated over every interrupt.
Commonly, registration includes creation, configuration and
attaching. However, implementation of registration differs for
different platforms. Thus, manual binding information is used
here to generate platform-specific codes. Completion opera-
tions in Post are also generated.

Algorithm 2 Generate dispatcher component

function DISPATCHERGENERATE(dispatcher)
VarGenerate(dispatcher.Var);
PreAction(dispatcher.Pre);
for each intr € dipatcher.interrupt do
InterruptRegister(¢ntr, dispatcher.Pri);

PostAction(dispatcher.Post);

Algorithm 3 Generate handler component

function HANDLERGENERATE(handler, node)
if node = Start then
VarGenerate(handler.V ar);
if node = Exit then
ReturnGenerate(handler);
if node.child.size > 0 then
for each cn € node.child do
BranchGenerate(node, cn);
if EnterLoop(cn) then
LoopGenerate(cn);
ISRGenerate(handler, LoopExit(cn));
else if isJointNode(cn) then
registerJointNode(cn);
else
HandlerGenerate(handler, cn);
if isDominatedBy(node, jointNode) then
HandlerGenerate(handler, jointNode);

Handlers as ISR, DH and App are aimed at servicing
interrupts. Therefore, main task of code generation on handler
components is to traverse a CF'G and generate codes. As
in Algorithm 3, a recursive strategy is applied which starts

from the Start node. For intermediate nodes, the algorithm
generates sequential, branch and loop structures recursively.
When a joint node in C'F'G is detected, the algorithm records it
and pauses the traverse on the current path. Until all the branch
paths assembles at the joint node, the traverse is resumed.
Another specialty is the processing of Exit node. For ISR,
normal completion is generated if no D H is associated. Other-
wise, the algorithm generates invoking codes based on buffer
configurations in Dispatcher. For DH and App, normal
completion is generated.

IV. CASE STUDY

In this section, we apply iDola on the modeling of multi-
function vehicle bus controller(MVBC), which is an industrial
system in Chinese railway applications provided by THsoft
InfoTech(http://www.thit.com.cn/). MVBC is interrupt-driven
since majority of its functionalities are realized by service on
interrupts. A picture of MVBC and its architecture is shown
in Figure 6.

1 1
| 1 1 |
1 I I 1
: ! eCos | : :
FPGA | : operating 1 |
[system 1 |
| 1 1 |
| 1 1 |
| 1 | I |
| 1 \—/

Fig. 6: A picture of MVBC

As marked in Figure 6, MVBC is constituted with
FGPA and ARM parts. FPGA is the Source of the system,
which procudes interrupts to ARM parts. In the applica-
tion, seven types of interrupts are defined, including super-
visory frame(SPV), main frame(MF), slave frame(SF), error

frame(ERR), timeout(TO), synchronization frame(SYNC) and
notime frame(NT). Handler programs are executed in the ARM
platform with eCos operating system. ARM is connected to
FPGA through GPIO lines. By setting GPIO, FPGA notifies
the arrival of interrupts. The eCos then detects the event
and invoke corresponding handlers to service the interrupt.
Execution of handlers may modifie GPIO and trigger process
in FPGA. We develop a modeling and analysis tool of iDola,
called Tsmart-Edola. MVBC is modeled graphically in Tsmart-
Edola as in Figure 7 with the following specification segment.

FPGA({
MF, SF,SPV ,SYNC,NT,ERR,TO;
start SPV; SF not follow SPV;
ERR not follow MF; TO not follow MF;

dispatcher{
priority{
MF=0; SF=0; SPV=1;
SYNC=(2,2); NT=3; ERR=(4,4); TO=(4,4);

buffer{capacity = 5}

queue{capacity = 3}
post{mvb_device_status_16 = 0;}
MFE—>MF_ISR; SF—SF_ISR;

SPV—SPV_ISR; NT-—>NT_ISR;

ERR—>(ERR_ISR ,ERR _DH) ; TO—>(TO_ISR ,TO_DH) ;
SYNC—>(SYNC_ISR[buffer=3],SYNC_DH);

In Figure 7, there are 7 ISR in the system, 3 of which
are associated with a DH. In respect of FPGA, we define
four patterns to describe constraints on the interrupt sequence,
including starting and following relationships. In simulation,
these patterns can help accurately reflect the real environment
of the system. They can also be used in verification to largely
reduce the state space. From the specification of Dispatcher,
we can see that five priority levels are defined. Since MF and
SF are top-priorited, they finish handling in ISR to ensure
quality of service. SYNC, ERR and TO are attached to DHs,
which inherit the priority from ISR, because their occurrence
are comparatively less frequent and have lower impact on the
system performance. Moreover, post operations are specified to
update the value of a global variable. With a FIFO queue which
is declared to store maximum five DHs, process of DHs is
delayed until all the executions of I.SRs complete. Through
this way, we can accurately model the interrupt handling
mechanism in eCos with ISR and DSR. In the dispatching
configuration, ISR of SYNC interrupt is equipped with a
3-count buffer, which assembles three invoking requests to
DH before its real dispatching. This feature is also applied
in many RTOS to reduce invoking overhead and handle bursty
interrupts.

Table I shows the improvement of simplicity and readabil-
ity brought by iDola. For interrupt handlers, we compare the
iDola model with written C codes. An average control flow
graph with 9 nodes is specified in iDola to service an interrupt.
Comparatively, 32 lines of C codes are written on average.
For the Dispatcher, we use 13 lines of specification in iDola
to assign priorities, build configuration and attach handlers
to interrupts. However, 52 lines of codes are neccessary to

TABLE I: Comparison between iDola model and written codes
of MVBC

Interrupt #Handler #Node LOC
MF 2 11 46
SF 2 6 28
SPV 1 4 14
SYNC 2 6 21
NT 1 3 11
ERR 2 12 47
TO 2 17 53

Dispatcher | #Handler | #SPEC | LOC
dispatcher 1 13 52

finish the corresponding tasks. Because of the declarative and
concise nature of iDola as a DSL, the design of an IDS
can be efficiently mantained. Especially for the specification
of Dispatcher which captures complex interrupt handling
mechanism of RTOS and target platform, we can quickly
locate inappropriate configurations or modify it to adapt new
applications.

Using the proposed transformation, we verify the MVBC
model on data race and reachability properties. Data race is
a major threat in IDS with the presence of interrupts and
reachability checks whether a specific handler can be invoked
when an interrupt occurs. The properties are displayed as:

e A[] SYNC_ISR.mvb_status == SYNC
o flag sf == true — SF_ISR.LAUNCH

For data race properties, we check whether the local copy
of the global variable is intruded by other routines. Because
the variable is an identifier in its service, conflicting write op-
erations may result in functionality confusion. For reachability
properties, we check whether an I.S R can always be dispatched
if the corresponding interrupt ocurrs. This property is also
crucial in RTEA since it is closely related to the deadline
analysis of interrupt handling. Through verification, a data
race counter-example is reported in Figure 8. The reachability
properties are satisfied based on patterns of the interrupt source
specified in the dispatcher.

The reported data race is a real design defect when DSR
of SYNC is preempted by ISR of MF at the accessing point
of the global variable. To fix the defect, we should add access
protections to the DSR of SYNC to detect conflicting access.

Based on the iDola model of MVBC, we also use the
proposed algorithms to generate platform-specific executable
codes. The generation is applied on the major impementation
of the MVBC, generated codes along with other written C
codes and eCos are compiled and burned into the ARM
platform for execution. Due to the compatiability, we bind
some ARM APIs to actions in CFG of iDola handlers. For
instance, the post operation in Dispatcher is binded to an
API mvb_arm_send_status(mvb_device_status_16). After the
binding, code generation of MVBC can be done without
modification on models.

On the PC with dual core processor and 4GB memory, the
code generation executes 376ms and uses 37.98MB memory.
Figure 9 shows a comparison between the generated codes and
the written codes. An obvious difference is that the generated
codes has a slightly smaller size in all the interrupt handlers.

Source
FPGA

I:l ISR |:| App
ME ISR MF_PROCESS

|:| App

SF_PROCESS

Dispatcher

dispatcher

|:| ISR

SYNC_DH
SYNC_TSR

Fig. 7: iDola model of MVBC

This is mainly because the written codes contain some debug-
related statements, which are ignored during the proposed code

dispatcher SYNC_ISR SYNC_DSR MF_ISR ; . .o,)
- - - generation. For the register thread which is responsible for
creating interrupts, registering them in eCos and attaching them
| to corresponding handlers, generated codes share a equally
aunch . A .
———————— . same size with written codes.
PR ——
laungh

read

Fig. 10: Communication with generated codes

Equipped with the generated codes, MVBC is accessed into
a train communication network to check its functionality and
real-time performance. From Figure 10, we can see that the
generated codes work well with an average time interval 3.6us,
satisfying the timing requirement in the application domain.

Fig. 8: Counter-example found in verification

V. CONCLUSION

In this paper, we propose a novel DSL called iDola with
formal operational semantics to model IDS in RTEA. The
I major superiority of iDola is the capability to capture both
] I

behavior of handlers and complex interrupt handling mecha-
nism. Based on the advance feature, iDola can model delayed
process and buffered service of interrupts, which are supported
in many RTOS and target platforms. We further presents a
transformation from iDola to timed automata for verification
and code generation algorithm to generate executable platform-
specific codes. The proposed approach is applied on MVBC,
an industrial IDS which executes in a real-time environment

0
MF SF PV

SYNC Register thread

®Generated codes ®

Fig. 9: Comparison between generated and written codes

with eCos operating system to handle 7 interrupts. With iDola,
we model a dispatcher and all the interrupt handlers. The
dispatcher is an abstraction of eCos, which leverages DSR
for delayed process and buffer to reduce invoking overhead.
Compared to written codes, iDola excels at smaller size and
declarative expressiveness. Via the proposed transformation,
we verify MVBC on data race and reachability properties.
Verification uncovers design defects which may lead to data
races for two pairs of interrupts. Furthermore, we run our
algorithm to perform code generation on the MVBC model.
With almost the same size as written codes, the generated
codes are readable and shows comparatively equal performace
through real-time communication with strict timing constraints.

VI. ACKNOWLEDGEMENT

This research is sponsored in part by NSFC Program
(No. 61202010, 91218302), National Key Technologies R&D
Program (No.SQ2012BAJY4052), 973 Program (No.2010CB
328003) of China and Tsinghua University Initiative Scientific
Research Program(20131089331).

REFERENCES

[1] B. Berard, S. Haddad, and M. Sassolas. Real time properties for
interrupt timed automata. In 2010 17th International Symposium on
Temporal Representation and Reasoning, pages 69-76. IEEE, 2010.

[2] B. Brard and S. Haddad. Interrupt timed automata. FoSSaCS, 2009.

[3] B. Brard, S. Haddad, and M. Sassolas. Interrupt timed automata:
verification and expressiveness. Formal Methods in System Design,
40(1):41-87, 2012.

[4] D. Brylow, N. Damgaard, and J. Palsberg. Static checking of interrupt-
driven software. In Proceedings of the 23rd International Conference
on Software Engineering, ICSE’01, pages 47-56. IEEE, 2001.

[5] D. Brylow and J. Palsberg. Deadline analysis of interrupt-driven
software. In Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, pages 198-207. ACM,
2003.

[6] R. Chen, X. Guo, Y. Duan, and B. Gu. Static data race detection
for interrupt-driven embedded software. In 2011 5th International
Conference on Secure Software Integration Reliability Improvement
Companion, pages 47-52. IEEE, 2011.

[7]1 M. Higashi, T. Yamamoto, and Y. Hayase. An effective method to
control interrupt handler for data race detection. In Proceedings of the
5th Workshop on Automation of Software Test, AST 10, pages 79-86.
ACM, 2010.

[8] C. Hoare. Communicating sequential processes. Prentice Hall, 1985.

[91 Y. Huang, J. F. Ferreira, G. He, S. Qin, and J. He. Deadline analysis of
autosar os periodic tasks in the presence of interrupts. Formal Methods
and Software Engineering, 8144:165-181, 2013.

[10] Y. Huang, Y. Zhao, J. Shi, and H. Zhu. A denotational model for
interrupt-driven programs. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 15-20. IEEE, 2013.

[11] Y. Huang, Y. Zhao, J. Shi, H. Zhu, and S. Qin. Investigating time
properties of interrupt-driven programs. Formal Methods: Foundations
and Applications, 7498:131-146, 2012.

[12] J.C.M.Baeten, J.A.Bergstra, and J. W. Klop. Syntax and defining
equations for an interrupt mechanism in process algebra. Fundamenta
Informaticae, 1986.

[13] F. JOHNSON and J. M. PAUL. Interrupt modeling for efficient high-
level scheduler design space exploration. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 13(10), 2008.

[14] Kotker, D.Sadigh, and S.A.Seshia. Timing analysis of interrupt-driven
programs under context bounds. In Formal Methods in Computer-Aided
Design (FMCAD), pages 81-90. IEEE, 2011.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

K.Salah, Dhahran, and K. Elbadawi. Modeling and analysis of interrupt
disable-enable scheme. In 2/st International Conference on Advanced
Information Networking and Applications, pages 1000-1005. IEEE,
2007.

B.-K. Lee, M.-H. Kang, K. C. Park, J. S. Yi, S. W. Yang, and Y.-K.
Jun. Program conversion for detecting data races in concurrent interrupt
handlers. Software Engineering, Business Continuity, and Education
Communications in Computer and Information Science, 257, 2011.

G. Li, S. Yuen, and M. Adachi. Environmental simulation of real-time
systems with nested interrupts. In Third IEEE International Symposium
on Theoretical Aspects of Software Engineering, TASE 2009, pages 21—
28. IEEE, 2009.

J. Regehr. Safe and structured use of interrupts in real-time and
embedded software. 2007.

J. Regehr and N. Cooprider. Interrupt verification via thread verification.
Electronic Notes in Theoretical Computer Science (ENTCS), 174(9),
2007.

B. Schlich, T. Noll, J. Brauer, and L. Brutschy. Reduction of interrupt
handler executions for model checking embedded software. Hardware
and Software: Verification and Testing, 6405, 2011.

G. M. Tchamgoue, K. H. Kim, and Y.-K. Jun. Dynamic race detection
techniques for interrupt-driven programs. In Proceedings of the 4th
international conference on Future Generation Information Technology,
FGIT ’12, pages 148-153. ACM, 2012.

G. M. Tchamgoue, K. H. Kim, and Y.-K. Jun. Verification of data races
in concurrent interrupt handlers. International Journal of Distributed
Sensor Networks, 2013.

X. Xu and C.-C. Liu. Modeling interrupts for software-based system-
on-chip verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 29(6), 2010.

Y. Zhao, Y. Huang, J. He, and S. Liu. Formal model of interrupt program
from a probabilistic perspective. In 16th IEEE International Conference
on Engineering of Complex Computer Systems, pages 87-94. 1EEE,
2011.

