Application-specific Architecture Selection for
Embedded Systems via Schedulability Analysis

Han Liu*, Hehua Zhang*, Yu Jiang, Xiaoyu Song!, Ming Gu* and Jiaguang Sun*
*School of Software Tsinghua University, TNLIST, KLISS, Beijing, China
TDepartment of Computer Science and Technology, Tsinghua University, TNLIST, KLISS, Beijing, China
iDepartment of ECE, Portland State University, Oregon, USA

Abstract—Architecting real-time embedded systems is of the
top significance during the design phase, especially in complex
applications. Due to limited time and resource, to guarantee
scheduling eminence without violating application-specific con-
straints is a challenging problem in architecture level. In this
paper, we firstly present an enhanced transformation from AADL
models to Cheddar input for schedulability analysis. With sub-
program and delayed connection, this transformation is feasible
for complex system designs. Based on schedulability analysis,
we further propose a novel architecture selection engine, which
evaluates scheduling performance through selection standards
and application-specific constraints via satisfaction functions.
With the proposed selection engine, information from both
schedulability and real-time constraints are captured to pick
up an optimal architecture. We apply the proposed approach
on the architecture selection of an industrial control system in
railway applications. Four candidate AADL architectures are
transformed and analyzed for schedulability. Then in the selection
engine, candidates are ranked within two application constraints.
Compared to the selection of general criteria and traditional AHP,
our engine excels at better schedulability and satisfaction on real-
time application-specific constraints. Moreover, with adjustment
on constraints, our engine shows delicate sensitivity by generating
a modified selection. We believe the proposed approach can
facilitate architecture design of real-time embedded systems.

Keywords—AADL; Schedulability; Architecture Selection En-
gine

I. INTRODUCTION

With the widespread application of real-time embedded
systems(RTES), architecture modeling is gaining more at-
tention. Its increasing popularity results from two aspects.
Firstly, most system failures are ascribed to inappropriate
architecture designs. For RTES where timing and resource are
strictly constrained, a bad architecture may lead to a weak
implementation which is incapable of satisfying constraints.
Secondly, preference for architecture modeling comes from
the need to uncover design defects at early stage. Based on an
architecture model, schedulability analysis can check timing
propertie of RTES. As a result, it is easier to fix poor designs
at an architecture level to reduce development costs.

However, architecture design is absorbing more complex
features as remote calls and synchronous computation. Since
these features can hardly be loaded for analysis, detecting
design defects is a challenging problem. In addition, a schedu-
lable architecture is not necessarily the optimal for two reasons.
Firstly, applications may have various priorites over scheduling
parameters. Moreover, application-specific constraints are dif-
ficult to capture and analyze in practice, which poses another

challenge in architecture design of RTES.

To address these problems, we present a novel approach
for architecture selection in RTES with specification in Archi-
tecture Analysis and Description Language(AADL) [1]. Main
contributions of this paper are: (1) An augmented schedula-
bility analysis method for RTES, where AADL architecture
specification is transformed into input of a popular schedu-
lability analyzer Cheddar [2]. Compared to other transforma-
tion strategies, our method includes advanced constructs as
subprogram and delayed connection. Consequently, complex
architecture with various timing of communication can be
analyzed for schedulability. (2) A novel architecture selection
engine, integrating scheduling information with application-
specific constraints. Candidate architectures are evaluated over
response time, processor utilization, context switches and flow
latency, which are strongly related to timing performance of
the system. In addition, we defined a layer of application-
specific constraints in the engine to detect and reflect constraint
violations in architecture selection, which makes our engine a
better alternate for RTES.

II. RELATED WORK

Limited time and computation resource, as the intrinsic na-
ture of embedded systems, mirrors the value of schedulability
analysis. In [3], Liu’s theory states that processor utilization
can be used as a sufficient condition for schedulability. To
analyze schedulability of AADL models, transformation-based
approaches are proposed. Timed automata and Uppaal are
used in [4] to analyze schedulability through verification.
Based on Liu’s theory, Cheddar [2] is implemented to address
this problem in a delicate manner with detailed scheduling
information.

From another perspective, architecture selection is already
a prevailing topic. It is accepted that the selection is a tradeoff
between most vital architectural angles. Due to the simplicity,
multi-criteria decision making(MCDM) methods like Analyti-
cal Hierarchy Process(AHP) [5] are widely adopted to balance
this tradeoff. The related works may be categorized in two
groups: (1) selection in embedded systems. [6] presents a
combined method with Architecture Tradeoff Analysis(ATAM)
and AHP to make decisions on choosing SW/HW integration.
Attributes as safety, reliability, modifiability and serviceablity
are taken into consideration. In [7], AHP and other MCDM
methods are used to analyze performance of the partition
design on embedded systems. Although this approach shares
some common attributes with ours, including processor utiliza-
tion, latency and response time, it does not handle the domain

diversity in architecture selection. Aleti et al implements
an Eclipse-based tool ArcheOpterix to evaluate architectures
in terms of data transmission reliability and communication
overhead [8]. (2) selection in software. Based on AHP, many
works rely on quality attributes for architecture selection as in
[9]. [10] proposes an AHP-GP model to capture nonfunctional
requirements in architecture selection. In contrast to selecting
an architecture design, [11] leverages AHP to identify critical
tradeoffs and sensitive points in design. [12] presents an AHP-
based method to accurately capture empirical knowledge of
stakeholders.

III. ARCHITECTURE SELECTION ENGINE

We propose an architecture selection engine with a com-
bination of schedulability analysis and application-specific
constraints. The selection process is displayed in Figure 1.

Candidate ﬁ model Schedulability
AADL models @ analyzer

Application-specific \I
constraints |
—

Architecture
selection engine

sunsa1 sisAjeue AIIGEINPaYS

Best | (ommmmm

Architecture \

/

Fig. 1: Architecture selection process

As presented in Figure 1, candidate architectures are
transformed for schedulability analysis using the proposed
rules. Scheduling results are collected by the analyzer and
delivered into the proposed selection engine. Based on the
proposed criteria, our engine evaluates candidates and checks
performance through a proposed satisfaction function over
application constraints. As output of our engine, an optimal
architecture is selected.

A. Architecture transformation

The current Cheddar is incapable of handling AADL
models with subprogram and delayed connection. We provide
an enhanced transformation from AADL to Cheddar to cover
non-support components.

An AADL model M is a tuple (Pro,Th,Sp,D,Int)
where Pro is a set of processors. Th denotes thread
set. A thread is a tuple (dp,c,d,p,call), where dp €
{period, aperiod, sporadic, background} represents the dis-
patching protocol. ¢ is the execution time. d and p are the
deadline and period of the thread. call is a set of subprogram
calls in a thread. Sp is subprograms. D is the data defined in
the model. Int denotes interactions in port connections(PC'),
delayed port connections(D PC), access connections(AC) and
subprogram calls(SC').

Input of Cheddar is a tuple (Pr,Ad,Task,R]),
where Pr is a set of processors with mapped address
space Ad. A Task is a tuple (type,cap,dl, p).

type € {period, aperiod, sporadic, customized} defines the
mechanism to activate a task. cap denotes the execution time
of the task. dl and p represent deadline and period. R refers
to resource in the model. In this paper, we only consider data
resource. I denotes connections between tasks.

Based on the configuration above, we present transforma-
tion rules formally, from an AADL model M4 to a Cheddar
input model M¢ as in Table I. In the first rule, an AADL
processor is transformed to a Cheddar processor with a map-
ping address space. Scheduler of the Cheddar processor is set
according to the Scheduling_Protocol property of AADL
processor. Data components in AADL is mapped to resource
of Cheddar. Begin and end time of the resource access is
set at the dispatching and execution completion point of the
corresponding AADL thread which owns the data. Thread and
subprogram components, which are execution units in AADL,
are converted to task in Cheddar. The capacity of a task is
the sum of execution time of a thread and all its owning
subprograms. For another advanced construct delayed port
connection in AADL, it is cut into two adjacent connections.
The cutting point is transformed as a task which executes
between the execution and period end of its predecessor. In
respect of other kind of interactions in AADL, the last rule is
used to transform them into connections in Cheddar.

B. Selection Engine

Input of our engine is a tuple (WCRT,PU,CS,FL),
which is also the output of Cheddar. WCRT is average worst-
case response time for all the tasks. PU denotes the processor
utilization. C'S represents the number of context switches and
F'L is the end-to-end flow latency.

Goal Architecture Selection
E|
(=4
it H
| . i
! Constraint !
H i

Standard

N o

Fig. 2: Selection engine

Presented in Figure 2, the proposed selection engine is an
extension of traditional AHP, which has 4 layers including
Goal, Standard, Constraint and Solution. To accomplish the
Goal, multiple objectives are defined in the Standard layer
as {STWCRT,STPU,STcs, STFL}, referring to scheduling
results. Candidates are listed in Solution layer. Traditional
AHP uses an integer between 1 and 9 represent the comparative
advantage. Although the method is convenient, it is incapable
to fully capture the impact of application constraint violation.
Thus, we propose the Constraint layer, which is a collection
of constraints. Each constraint is a triple (C, S, ®;;). C denotes

TABLE I: The proposed transformation rules

(Processor)

Mg .Pr.Scheduler=M4.Pro.Scheduling _Protocol

(Data)

]\/IA.PT‘O—)(Mc.PnMc.Ad

)
r.begin=thread.pAr.end=thread.p+thread.cAdCthread

task.type=thread.dpAtask.cap=thread.c+

deMa.D—reMc.R
Ma.Th. call cAtask.dl=thread.d\task.p=thread.p

(Thread & Subprogram)

threadeM 4. Th—>taak€]\4c Task
7/C élTLk_'LC bOLL"(e/\Zc source.p= 7/C source.cap= lA source. p—ZA source.c

(Delayed port connection)

(Interaction)

iAEMa.Int. DPC—MC,zCGJV[c I
ia.source,ia.sink€Ma. ThAic.source,ic.sink€Mc.Task

the content. S is the attached standard. ®;; is the satisfaction
function with a Solution ¢ and a Standard j. ¢;; is defined
as in (1).

1, i satisfies the constraint
G =< 1, j has no constraints €))
c €10,1), i violates the constraint

As in (1), the satisfaction function has a range from 0 to
1. The closer it is to 1, the lighter the hazard is in constraint
violation. The major strength of the Constraint layer is the
capability to reflect violations directly in the selection.

In selection, pairwise comparisons are used to compare two
objects. For n objects, a pairwise comparison P = (aij)nxn
satisfies that a;; = 1,4 < n and a;; = , < n, g <n.
a;; is set in 71-9” scale as in [5]. In add1t10n comparisons
of Solutions are built over each Standard. Overall five
comparisons are constructed. According to [5], normalized
maximal eigenvector of a pairwise comparison is defined as
the weighted vector. Object with a larger weight has greater
impact on architecture selection. Assuming the weighted vector
of Standards is Wiandard = [wSTl s WSTy, WSTy s wsn]. For
Solution with m candidates, there are four m x m pairwise
comparlsons The weighted vector of iy, (i < m) matrix is

¥ ution = [wsol,wso2 Wsp, |- Four weighted vectors of
Solution are assembled into a Welghted matrix as following.
R={(Ti=1,2,3,4}

The total weighted vector W of our selection engine
is defined as follows, representing scores of all the can-
didate architectures considering scheduling performance and
application-specific constraints.

soluﬂ(m)

ZwétJR,JQJ,Z—l 2..m
j=1

W = [wi,wa...wm],

IV. CASE STUDY

The proposed approach is applied on a real industrial
system, the Braking Electronically Control System(BECU).
Based on railway applications, two constraints are:

1) Latency of braking flow must not exceed 1450us.
2) WCRT of the sending thread in BECU must not
exceed 150us.

As in Figure 3, four candidate architectures are modeled
in graphical AADL [1]. A and B have centralized calculation
threads with calls to subprograms and delayed connections,
while C and D spread functions to distributed threads. Schedul-
ing properties of candidates are listed in Table II. Through
transformation, schedulability analysis is shown in Table II.

iAEMA Int\Ma Int. DPC—ic €M .1

(c) Candidate C

(d) Candidate D

Fig. 3: Candidate architectures of BECU

TABLE II: Scheduling properties of candidates. P: period; ET:
execution time; Unit: s

A B C D
Thread P [ET | P |[ET | P | ET | P | ET
1 150 | 10 | 150 | 10 | 150 | 10 | 150 | 10
2 400 | 70 | 400 | 75 | 200 | 30 | 200 | 30
3 420 | 20 | 420 | 25 | 210 | 10 | 210 | 15
Z 460 | 20 | 460 | 25 | 180 | 10 | 180 | 15
5 440 | 50 | 440 | 50 | 190 | 10 | 190 | 10
6 430 | 10 | 480 | 15 | 180 | 10 | 180 | 10
7 - - B - [200 | 10 | 200 | 10
8 - - B - | 210 | 20 | 210 | 25
9 - - B - | 220 | 20 | 220 | 25
10 - - B - | 230 | 10 | 230 | 15
Results of schedulability analysis
Candidate | WCRT PU CS FL
A 1183 46.1% 30 1460
B 130.0 513% 30 1465
C 71.0 70.8% 83 1390
D 81.0 82.8% 91 1395
TABLE II: Standard pairwise comparison for high-speed

railway and subway applications

Railway WCRT PU 5] FL
WCRT 1 4 3 %
1 1
S T
3 7
FL 3 9 7 1
Subway WCRT PU CS FL
WCRT 1 I i I
PU 2 i i 4
cSs 6 3 1 5
FL 2 1 1 1

Targeting at high-speed railway and subway applications,
Standard pairwise comparisons are shown in Table III.
WCRT and FL are more valued in railway while PU and
CS are prioritized in subway. The selection is in Figure 4.

Fig. 4: Selection in high-speed railway & subway applications

In Figure 4, the y-axis denotes the weight calculated by
our engine. The results display the impact of application-
specific requirements on architecture selection. Specifically,
C is selected as the best architecture for high-speed railway
applications due to its short flow latency, while B with less
context switches is selected out for subway applications.

We also compare the proposed engine with two selection
approaches: a) general criteria selection [11], including mod-
ifiability, scalability, development effort and portability and
b) traditional AHP with scheduling information in subway
application domain. The comparison is exhibited in Figure 5.

Fig. 5: Selection comparison to general criteria and AHP

Under general criteria, candidate A is selected out. How-
ever, the selection suffers from poor schedulability with longer
WCRT and flow latency than selection in high-speed railway
applications. As an alternate, traditional AHP presents a similar
result as the proposed engine. Nevertheless, without insights
into application constraints, A is considered better than C in
traditional AHP with the fact that A fails to meet constraints
of subway domain.

TABLE IV: Sensitivity analysis on constraints

Tight constraints | Loose constraints

Candidate g T Rank | Weight | Rank
A 02754 | 3 | 02837 2
B 02942 I 0.2995 T
C 02760 | 2 | 02762 3
i) 0.1206 | 4 | 0.1267 3

For subway applications, we loose the W CRT constraint
from 150us to 180us. The comparison results are shown in
Table IV. Comparatively, the relative merit between A and
C reverses. To sum up, adjustment on application-specific
constraints can be reflected through the proposed selection
engine in a delicate manner.

V. CONCLUSION

In this paper, we propose an enhanced transformation
strategy on AADL models for schedulability analysis and a
scheduling-based architecture selection engine for embedded
systems. With the transformation strategy, complex AADL
models including subprograms and delayed connections can
be involved in schedulability analysis. With the proposed
engine, both scheduling information and application-specific
constraints are captured for selection. Our approach is ap-
plied on a real complex industrial system, BECU. Candidate
architectures in AADL are analyzed for schedulability. The
proposed selection engine then calculates a selection. In com-
parison with general criteria and traditional AHP, our engine
excels at guaranteeing schedulability and meeting application-
specific constraints. Furthermore, our engine shows delicate
sensitivity to modification on constraints. In the future, we
plan to apply this approach on more large-scale systems.

ACKNOWLEDGMENT

This research is sponsored in part by NSFC Program
(No. 61202010, 91218302), National Key Technologies R&D
Program (No.SQ2012BAJY4052), 973 Program (No.2010CB
328003) of China and Tsinghua University Initiative Scientific
Research Program(20131089331).

REFERENCES

[1] “Sae as5506a: Architecture analysis and design language(aadl),” 2009.
[2] F. Singhoff, J. Legrand, L. Nana, and L. Marce, “‘Cheddar: a flexible real

time scheduling framework,” in 2004 annual ACM SIGAda international
conference on Ada. ACM, 2004, pp. 1-8.

[3] L. Liu and W. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of the ACM(JACM), vol. 20,
no. 1, pp. 46-61, 1973.

[4] A.Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated ver-
ification of aadl-specifications using uppaal,” in 2012 IEEE 14th Inter-
national Symposium on High-Assurance Systems Engineering (HASE).
IEEE, 2012, pp. 130-138.

[5] T. Saaty, “The analytical hierarchy process,” 1980.

[6] P. Wallin, J. Froberg, and J. Axelsson, “Making decisions in integration
of automotive software and electronics: A method based on atam and
ahp,” in Fourth International Workshop on Software Engineering for
Automotive Systems. 1EEE, 2007.

[71 P. Garg, A. Gupta, and W. Rozenblit, “Performance analysis of embed-
ded systems in the virtual component co-design environment,” in //th
IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems. 1EEE, 2004, pp. 61-68.

[8] A. Aleti, S. Bjornander, L. Grunske, and 1. Meedeniya, “Archeopterix:
An extendable tool for architecture optimization of aadl models,” in
ICSE Workshop on Model-Based Methodologies for Pervasive and
Embedded Software. 1EEE, 2009.

[9] M. Razavi, F. Aliee, and K. Badie, “An ahp-based approach toward
enterprise architecture analysis based on enterprise architecture quality
attributes,” Knowledge and Information Systems, vol. 28, no. 2, pp.
449-472, 2011.

[10] D. Babu, P. Govindarajulu, R. Reddy, and A. Kumari, “An integrated
approach of ahp-gp and visualization for selection of software architec-
ture: A framework,” in 2010 International Conference on Advances in
Computer Engineering. 1EEE, 2010, pp. 334-338.

[11] L. Zhu, A. Aurum, I. Gorton, and R. Jeffery, “Tradeoff and sensitivity
analysis in software architecture evaluation using analytic hierarchy
process,” Software Quality Control, vol. 13, no. 4, pp. 357-375, 2005.

[12] J. Lee, S. Kang, and C.-K. Kim, “Software architecture evaluation meth-
ods based on cost benefit analysis and quantitative decision making,”
Empirical Software Engineering, vol. 14, no. 4, pp. 453-475, 2009.

