
0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 1

System Reliability Calculation Based on the
Run-Time Analysis of Ladder Program

Yu Jiang, Hehua Zhang, Han Liu, William N. N. Hung, Xiaoyu Song, Ming Gu and Jiaguang Sun

Abstract—Programmable logic controller (PLC) system, a
typical member in the embedded family, is now widely applied
in industry. For safety critical PLC systems, reliability is of
top significance. However, due to subcomponents’ temporal
correlations caused by the run-time execution of embedded
ladder programs, the complexity of reliability analysis is greatly
increased. In this paper, we propose a novel probabilistic model
to analyze reliability of PLC systems, called run-time reliability
model (RRM). RRM is automatically constructed based on
the structure and run-time execution of the embedded ladder
program. Moreover, it is also a dynamic bayesian network
(DBN) capturing full dependencies in a PLC system. Then,
according to execution semantics of RRM nodes, we present
customized conditional probability distribution (CPD) tables to
calculate final reliability of the system, with failure probability of
every referenced component as refinement. The strength of this
model is that not only does it explicitly specify the correlations
between run-time execution of embedded software and system
components, but also it serves as a computational mechanism
for probabilistic inference. Besides, the proposed approach is
superior to previous works in both accuracy and efficiency.
Compared to monte carlo based simulation, the average error
rate of reliability values inferred from RRM model is small.

Index Terms—Programmable Logic Controller, Ladder Pro-
gram, Dynamic Beyesian Network, Run-Time Reliability Model.

I. INTRODUCTION

IN industrial practice, high fault rate imposes negative effect
on the performance of embedded systems. This is espe-

cially true for PLC systems with critical applications running,
such as nuclear power controlling plants and spaceport devices
[1]. Reliability analysis of PLC systems refers to evaluating
the effects of errors due to failure on individual system compo-
nents, such as sensors, actuators, processors, etc. As a result,

Manuscript received July 13, 2013; revised October 28, 2013 and December
18, 2013; accepted March 6, 2014.

Copyright c©2014 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

Yu Jiang is with the Department of Computer Science and Technology,
School of Software, Tsinghua university, Tsinghua National Laboratory for
Information Science and Technology, Key Laboratory for Information Sys-
tem Security, Ministry of Education, China. (Phone: (+86)13810353960; e-
mail:jiangyu198964@gmail.com)

Hehua Zhang, Han Liu, Ming Gu and Jiaguang Sun are with the School
of Software, Tsinghua university, Tsinghua National Laboratory for In-
formation Science and Technology, Key Laboratory for Information Sys-
tem Security, Ministry of Education, China. (Phone: (+86)13691349135; e-
mail:zhanghehua@gmail.com)

Xiaoyu Song is with the Dept. ECE, Portland State University, USA.
William N. N. Hung is with Synopsys Inc., Mountain View, USA.
This research is supported by NSFC Programs (No.61202010,

No.91218302), National Key Technologies R&D Program
(No.SQ2012BAJY4052) and 973 Program (No.2010CB328003) of China, and
Tsinghua University Initiative Scientific Research Program (20131089331).

many attempts are motivated to find accurate and scalable
reliability analysis methods for complex system designs [2].
Reliability is defined as the probability that a system will
perform its intended function during a specified period of time
under stated conditions. The typical task for reliability analysis
is to build a mathematical model to represent the system with
a set of random variables. Based on the environment, design
weakness and mishandling, distributions of theses variables
are specified to calculate a system level reliability [3],[4],
[5]. Most of the exiting models focus on critical hardware
parts of the system. Since the widespread use of digital inte-
grated circuit technology, software has been gaining increasing
importance in most systems. Because interactions between
hardware and software components are complex, a recent surge
in demand for methods to capture correlations of the software
and hardware components in reliability engineering springs up.

In this paper, we propose a novel probabilistic model,
named RRM, to handle the spatial dependencies and the
high order temporal dependencies, with both hardware and
software. From a global perspective, main contributions of our
approach are: (1) We propose a model for reliability analysis
including the spatial dependencies among system components
in a single time slice, and the run-time temporal dependencies
among system components caused by the execution of the
embedded ladder program. We prove that the model is a
minimal representation of the underlying dependency model
of the spatial dependencies as well as the run-time temporal
dependencies of the system, and hence is a DBN. (2) With our
customized CPD tables, reliability analysis is accurate, fast and
scalable for complex designs. We prove that the constructed
RRM model is a DBN that captures the execution semantic of
the embedded ladder program totally. Then, we present some
customized CPD tables according to the execution semantics
of the RRM nodes, and initialize those tables with the failure
probability of the corresponding system hardware components.
Finally, the joint reliability can be mapped to an RRM model.
The model preserves the underlying dependencies of the
spatial correlations and the run-time temporal correlation of
the embedded ladder program.

II. RELATED WORK

Traditionally, reliability analysis techniques mainly contain
combinatorial methods such as fault tree (FT) [6], reliability
block diagram (RBD) [7], and bayesian network (BN) [8]. FT
is a top-down, deductive reasoning method where an undesired
state of a system is analyzed using boolean logic to combine a
series of lower-level events. The basic symbols used in FT are

0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 2

grouped as events, gates, and transfer symbols. Gate symbols
are derived from boolean logic symbols and used to describe
the relationship between input and output events. It involves
specifying a top event for analysis, such as the failure of the
system, and identifying all associated events that could lead to
the top event. Then, it can be solved using techniques such as
binary decision diagrams (BDD)[9]. However, FT only repre-
sents a logical function and is insufficient in handling complex
functional dependencies between internal components of the
system. In order to enhance the modeling power of FT, analysts
extend traditional FT by associating a particular markov pro-
cess to the leaf nodes, named Dynamic Fault Tree(DFT) [10],
[11]. RBD is also a diagrammatic method for showing how
component reliability contributes to the success or failure of
a complex system. Similar work for extending the traditional
RBD with the markov process, named Dynamic Reliability
Block Diagram(DRBD), is presented in [12]. BN has been
applied in system reliability [8] with more flexible modeling
capabilities. It is based on the graphical and probabilistic
reasoning theory for handling uncertain probabilistic events.
System reliability can be expressed as a joint probability
function over some random variables and can be mapped
onto a BN. If the qualitative part of BN follows the logic
connection of system components, the causal dependencies
of the system are then thought to be captured. However,
they present the designer with a high level abstraction, to
demonstrate the distributions of the system components and
events. According to our knowledge, most analysis works
based on these techniques can not deal with the complex
relations among system components caused by the run-time
execution of embedded ladder program, automatically. They
mainly focus on critical hardware parts of the system or model
some dynamic behaviors manually, while softwares have been
gaining increasing significance in this domain.

Hence, some custom work for reliability analysis of PLC
systems with ladder program are conducted. In [13], the
researchers model the ladder diagram as an abstract syntax
tree and give a single topological traverse through the pri-
mary inputs during the software execution. In [14], the PLC
system is built as a hidden markov model and is solved
by some predefined domain knowledge. Then, the run-time
reliability probability can be tested by some formal techniques,
with probabilistic model checking. In [15], they propose a
probabilistic model based on BN. The ladder program is
modeled as a hybrid relation model(HRM). The model only
captures the dependencies of the system in a single time slice.
Those custom methods improve the accuracy of reliability
analysis to a certain extent, but none of them considers the
temporal dependencies of multiple time slices or supports the
automatic analysis. This is also the original motivation of this
paper. Based on the descriptions above, the main differences
between the proposed model and the previous techniques are
abstracted in the table I. More detail quantitative comparisons
are presented in the experiment result section.

III. BACKGROUND

The programmable logic controller is essentially an in-
dustrial computer designed to execute specific tasks quickly

TABLE I
THE LEVEL OF SUPPORT FOR EACH RELIABILITY TECHNIQUE

SUPPORT FOR PLC SYSTEM FT RBD BN HRM RRM
Spatial component level

√ √ √ √ √

dependence code level
√ √

Temporal single period
√ √ √ √ √

dependence multiple periods
√

Dependence manual
√ √ √ √ √

abstraction automatic
√

and efficiently. Its sole purpose is to automate processes
such as assembling lines, manufacturing cells, and material
handling. The system consists of the following components:
input module, micor-processor cooperated with the embedded
ladder program, memory, and output module. The hardware
block diagram is presented in the Fig. 1. The solid lines
among hardware blocks indicate the information flow direc-
tion. Signals can be received from input modules and memory,
processed by the microprocessor according to the arrangement
of the embedded software, and sent to output modules [16].

Input
module

Output
module

Micro‐
processor

memory

)s(AND 4Ladder
program

)s(M

)s(OR 3

)s(S

)s(F 6

program

)s(M 0

)s(F 1

)s(S 2
)s(O 5

Fig. 1. The hardware blocks of PLC system. The simple ladder program is
for the motor control system. M is the motor start button, S is the stop button,
and F is the memory storage unit. M is the name of the contact.

The dotted block contains the embedded application pro-
grams. The international electrotechnical committee has de-
fined four standard programming languages for PLC system
[17]: ladder diagram (LD), instruction list (IL), functional
block diagram (FBD), and structured text (ST). The most
widely used application program is called the ladder diagram,
which appears in many PLC systems currently on the market.
Different brands of PLC may have different formats for ladder
program instructions, but all formats share common elements
and can be manually converted. Each component in the ladder
diagram is called an instruction, which can be connected
in parallel and serial to create a ladder rung. Typical logic
instructions include: Normally open contact is used to denote
the examination of closed status, and its symbol is −| |−. For
example, when the value of M in Fig. 1 is 1, the contact
stays in the closed status, and the path can be traced through
this contact. Normally closed contact is used to denote the
examination of open status, and its symbol is −|/|−. For
example, when the value of S is 0, the contacts stays in open
status, and the path can be traced through this contact. Parallel
and Serial connections are used to denote the relation of two
logic blocks, similar to the semantics of circuits AND and

0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 3

OR. For example, the normally open contacts M and F is
in parallel connection, and their result OR(s3) is connected
to the normally closed contact S(s2) in serial, denoted by
AND(s4). Other instructions such as timer, counter can be
connected at the right side of the ladder rung. We can find
detailed explanations for those instructions in [17]. When the
micro-processor executes the ladder program, it will find a
path traced through each ladder rung, from left to right, and
from top to bottom. The dotted lines from hardware blocks
to program blocks indicate some mapping from the hardware
components to the instruction elements of the ladder program.

IV. RUN-TIME RELIABILITY MODEL

In this section, we introduce the probabilistic model
named RRM for reliability analysis. RRM model can be
described as a triple: 〈∪nt=1{xt

1, x
t
2, · · ·xt

n}, (∪nt=1(x
t
i, x

t
j)) ∪

(∪n−1t=1 (x
t
i, x

t+1
j)), f(xt

i| parent(xt
i))〉, where the first two

elements are the qualitative part and the third element is the
quantitative part. The model construction algorithm and the
proof that the constructed RRM is a DBN are described in
detail. The methods to define and initialize some customized
CPD tables are based on the failure probabilities of the mapped
system components and the execution semantics of the nodes.

A. Constructing Graph Structure

As mentioned in the background section, PLC system
works under a periodic scanning mechanism according to the
embedded ladder program. We intend to model these complex
relations into an RRM model automatically. The key challenge
of building an RRM model is to organize these contacts, coils,
special instructions and connections in a well-formed way
with the corresponding run-time execution logic. The steps
to construct the qualitative part is presented as follows.

The first step is to construct a BN for the PLC system,
considering the execution logic of the ladder program in a
single period, while ignoring the correlations with multiple
periods. Since the microprocessor processes the input signals
according to the arrangement of ladder program from left to
right and from top to bottom, we develop an iterative traversal
algorithm for the translation. The translation algorithm is
presented in algorithm 1. Based on the structure node and
the algorithm, all contacts, special instructions, connections
and execution logic of ladder program in a single period
can be captured in the generated directed graph structure. In
detail, the function read file is used to parse the five kinds
of structure of the ladder program. In the serial connection
structure presented in the first case, ladder2 is the minimal
ladder block that is serially connected to the rest of ladder logic
block. We traverse the contacts of the ladder rung to find the
last contact I or the last parallel connected structure IS, where
I or IS is serially connected with the proceeding contacts.
The ladder2 consists of the ladder block I or IS, and ladder1
consists of the rest of the ladder rung. The original ladder rung
is translated into a Serial Connection node, with two sub-
graph structure construction tasks. In the parallel connection
structure presented in the second case, ladder1 and ladder2 are
the maximal ladder logic blocks that are in parallel connection,

Algorithm 1: Translation Algorithm
Translation RRM(File Ladder){
repeat

switch (structure) do
case File Ladder1 AND File Ladder2

Tree nodeṫype = Serial Connection;
Tree nodel̇eft =
Translation RRM(File Ladder1);
Tree nodeṙight =
Translation RRM(File Ladder2);

endsw
case File Ladder1 AND OR Ladder2

Tree nodeṫype = Parall Connection;
Tree nodel̇eft =
Translation RRM(File Ladder1);
Tree nodeṙight =
Translation RRM(File Ladder2);

endsw
case Input Contact,Output Coil,Special

Tree nodeṫype = Contact,Special;
Tree nodel̇eft = NULL;
Tree nodeṙight = NULL;

endsw
endsw

until structure = eof ;
}

which can be processed similarity to the first case. The atomic
instructions of a ladder rung must be one of the last three
cases, including the regular instructions such as logic input
contacts and output coils, and special instructions such as
timer. The timer and others special instructions are captured
in the default branch of the switch block. When we use the
translation algorithm to parse the ladder program in Fig 1, the
result is presented in Fig 2.

0 1 0 1

3 2 3 2

4 4

5 6 5 65 6 5 6

Fig. 2. The left is the constructed BN model for the execution logic of a
single period, and the right is the graph structure capturing the correlations
between variable 6 and 2. In the ladder program in Fig 1, the output signal
s6 is stored into memory for the input of signal s2. (the dotted line is not an
arc of BN, it is used to present correlation dependencies of multiple periods)

The second step is to unroll the constructed BN to capture
the high order temporal dependencies among several periods
caused by the runtime execution of ladder program. This can
be done by adding arcs between the nodes from adjacent time
slices and correlated signals. The number of time slices is
dependent on its underlying structure and different systems
and applications may need different amount of time slices to

0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 4

capture the temporal dependencies. For example, the motor
control system just needs two cycles to finish the motor start
application. The unrolled BN structure corresponding to the
above BN is shown in the Fig. 3. There are two kinds of
temporal correlations. The thick dotted line between node xt

i

and xt+1
i for any i denotes the potential temporal correlation

of signal i. The thick dotted line, between node xt
i and xt+1

j

for some i and j, denotes the temporal correlation caused by
run-time feedback of the ladder program. We also need to
cascade the translated graph structure of the first ladder rung
to the node corresponding to the input contact.

Fig. 3. Unrolled graph structure for the corresponding BN. All possible
dependencies are presented first. For example, if the signal s0 read form the
sensor turns out to be wrong, it is possible that the sensor is wrong. Hence,
the value of s0 will also turns out to be wrong in the next cycle with high
probability. Hence, there should be a link between sji and sj+1

i.

0 1 0 1

3 2 3 2

4 44 4

5 6 5 6

Fig. 4. Qualitative part of the RRM model for the motor control PLC system.
The application just needs tow cycles of period to finish, hence, we unroll
the basic BN of the ladder program for two slices. When the probability
distributions of s20 and s21 are known, the value of signal s23 is known even
without the value of signal s13.

The third step is to modify the unrolled BN to get RRM,
which will be proved to be a DBN in the following subsection.
This can be done by deleting some arcs to make the unrolled
BN structure minimal. For example, given the node 2 and node
3 at time slice 2, the node 4 at time slice 2 is independent
of the node 4 at time slice 1. We also assume that the root
node signal is independent between time slices. Then, we can
delete the arcs between the node xt

i and xt+1
i for any i while

preserving the dependency correlations. The modified RRM
is shown in Fig. 4, and the high order temporal dependence
caused by the run-time feedback between signal x6 and x2 is
captured by the thick full line.

Finally, we can draw the conclusion that the constructed
RRM model in Fig. 4 captures the underlying dependency
model of the ladder program presented in Fig 1. The proof
process can be referenced from the support files [18]. The
execution logic of the ladder program can be mapped onto

the RRM nodes through the translation algorithm and the
arcs of the translated graph structure. The contacts, special
instructions, coils and connections of the ladder program can
be mapped to PLC system components. The contacts can be
mapped to input devices such as sensors, the coils can be
mapped to actuators such as motors, and the connections and
special instructions can be mapped to the execution of the PLC
microprocessor. In this way, the system components and the
embedded software are harmonized together.

B. Constructing Conditional Probabilistic Distribution

In RRM, we have five types of nodes: coil, contact, special,
parallel connection, and serial connection nodes. Each node
can be mapped to a corresponding hardware component.
We need to incorporate the reliability of the corresponding
hardware components into these variables by customized con-
ditional probability distribution tables. Tables are constructed
according to execution semantic of the RRM nodes and the
corresponding hardware component.

TABLE III and II are the conditional probabilistic distri-
bution tables of contact node. The contact node xt

i has four
possible values 10, 01, 00, and 11, where 01(10) represents
that the correct input should be 0(1), but the actual sampling
value of the input module or the value read from the memory
turns out to be 1(0), and 00(11) represents that the correct
input should be 0(1), and the actual sampling value of the
sensor or the value read from the memory is 0(1). TABLE
II is the conditional probabilistic distribution table for the
contact node that is mapped to the memory, where xt

i is the
variable read form the memory, xt−1

j represents the parent of
xt
i from the previous period. As presented in the qualitative

part construction and the proof procedure, the value read
from the memory are produced by the output of the previous
period. This captures the high order correlations of the run-
time dependencies. The errors inherited from the parent nodes
may be propagated to son nodes when the current node works
well, and may be canceled when the current node fails. This
rule also applies to the instructions presented in the other CPD
tables except for the coil node. When the parent signal is
correct with 11(00), xt

i will take the value 1(0) with probability
εm, where εm is the reliability of the component feedback
memory, denoting the reliability of the memory reading and
writing. The other cases can be expressed in similar. For
example, in Fig. 4, when the signal x1

6 is correct with 11,
then, the reliability of feedback signal x2

2 is εm.

TABLE II
CPD FOR THE CONTACT NODE MAPPED TO MEMORY

P (xt
i|x

t−1
j) xt

i = 10 xt
i = 01 xt

i = 00 xt
i = 11

11 1− εm 0 0 εm
00 0 1− εm εm 0
10 εm 0 0 1− εm
01 0 εm 1− εm 0

TABLE III is the CPD table for the contact node that
is mapped to the input devices such as switch and sensor.
I represents the correct input of the PLC system and εs
represents the reliability probability of the input devices. For

0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 5

example, when the correct input is 1, the xt
i will take value

0 when the sensor is in failure with probability 1 − εs. For
sensors that sample multi-bits single time, it can be defined on
the combination of the TABLE III. Corresponding to the input
module, we can define the conditional probabilistic distribution
tables of coil nodes that are mapped to output module in the
same manner.

TABLE III
CPD FOR THE CONTACT NODE MAPPED TO INPUT MODULES

P (xt
i|I) xt

i = 10 xt
i = 01 xt

i = 00 xt
i = 11

1 1- εs 0 0 εs
0 0 1 - εs εs 0

The conditional probabilistic distribution table for the spe-
cial node is also considered. Those instructions can be re-
garded as an execution of the microprocessor. As to the
counter instruction, the result of the instruction counter N
is determined by the conditional input and the current count
value. When the current value of the counter is between 0 and
the preset value N, the conditional input changes from 0 to
1, and the value of the reset variable is 0, then, the output of
the instruction is 1. Otherwise, the output of the instruction
is 0, and the current value increases by 1. The conditional
probability distribution table for the special node mapped to
counter N can be derived in the same manner.

TABLE IV
CPD TABLE FOR SPECIAL NODE MAPPED TO COUNTER INSTRUCTION

WITH PRESET VALUE N

P (xt
i|x

t
j , x

t
k) xt

i = 00 xt
i = 01 xt

i = 10 xt
i = 11 Cond

(00, zz) εp 1− εp 0 0 cv < N
(01, z0) 1− εp εp 0 0 cv < N
(01, z1) εp 1− εp 0 0 cv < N
(10, 0z) 0 0 εp 1− εp cv < N
(10, 1z) εp 1− εp 0 0 cv < N
(11, 00) 0 0 1− εp εp cv < N
(11, 01) 0 0 εp 1− εp cv < N
(11, 10) 1− εp εp 0 0 cv < N
(11, 11) εp εp 0 0 cv < N
(zz, zz) εp 1− εp 0 0 cv = N

TABLE V
CPD TABLE FOR SERIAL CONNECTION NODE MAPPED TO LOGIC AND

EXECUTION OF MICRO-PROCESSOR

P (xt
i|x

t
j , x

t
k) xt

i = 10 xt
i = 01 xt

i = 00 xt
i = 11

(00, zz) 0 1− εp εp 0
(01, z0) 0 1− εp εp 0
(01, z1) 0 εp 1− εp 0
(10, 0z) 0 1− εp εp 0
(10, 1z) εp 0 0 1− εp
(11, 00) 0 1− εp εp 0
(11, 01) 0 εp 0 1− εp
(11, 10) εp 0 0 1− εp
(11, 11) 1− εp 0 0 εp

The connection node is used to denote the relation of two
logic blocks, similar to the semantics of circuits AND and
OR, and can also be mapped to a logic execution of the
PLC microprocessor. Similar to the special node of timer
N instruction, it will also has two parent nodes (xt

j , xt
k) to

represent the input signal of this logic connection (xt
i). For

example, the node x3, x2 are connected in serial by the node
x4 in Fig. 2, which are traced back to the block OR(s3),
signal S(s2) and block AND(s4), respectively. As described
in the contact node for memory, the error propagation and
cancel rule must be obeyed in the definition of conditional
probability distribution. Let us consider two situations. We
assume that the values of x2 and x3 are right, taking value
11 and 11, respectively. When the processor works well with
probability εp, the output of x4 will be right, taking the value
11. When the processor turns out to be failure with probability
1 − εp, the output generates an error taking the value 10. In
the other situation, we assume that the values of x2 and x3 are
wrong, taking value 01 and 01, respectively. Then, when the
processor works well with probability εp, the output of x4 will
propagate the error to the node x5 and x6, taking the value
01. When the processor happens to be failed with probability
1 − εp, the errors of x2 and x3 will be canceled, taking the
value 00. Other situations can be explained in the same way
and are presented in the compressive table V.

Then, possible predictive and diagnostic inferences about
the reliability can be evaluated. For example, when all the re-
liability of hardware components are given, the total reliability
of the system can be predicted. Many algorithms have been
invented for the inferences, among which message passing
is comparatively popular. Based on the inference algorithms,
many software tools such as CODA and Nertica [19], [20]
have been implemented. In our experiments, we use Nertica.
After reliability of each ladder rung Ri is obtained by applying
the inference algorithm and the software, we can get the final
reliability function for the whole PLC system as

∏i≤n
i=1 (Ri).

Ri is defined on the probability of the final output node, and
equals to P (00) + P (11), as described in those conditional
probabilistic distribution tables.

V. EXPERIMENT RESULT

First, the reliability evaluation of a small motor control
system is presented to show how RRM works. Then, We
conduct some experiments on the reliability evaluation of more
complex industry systems to validate the accuracy and the
scalability of RRM model. For comparison, we evaluate the
reliability of those systems with the original RBD method, FT
method, and with our previous HRM [15] method considering
dependencies in a single time slice. Finally, reliability col-
lected from simulations on the real systems are used to confirm
the correctness. The monte carlo simulation framework is
based on fault injection of the GX Simulator6-C of Mitsubishi
[21], [22]. The values of these parameters are set according
to the description in [17], [23]. We embed the sampling
error probability and the processing deviation probability into
the monte carlo simulator to collect the reliability of PLC
systems. Test benches are also generated to collect output.
Each application is simulated for 10000 times with random
generated inputs. The average value is the final result of
simulation reliability value.

The small motor control system consists of an input module
connected with two sensors to sample the move instruction and
stop instructions, a latch memory to store the temporal variable

0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 6

that will be used as the input of the next period, a processor to
process those three inputs according to the embedded ladder
program shown in Fig. 1, and an output module connected to
an actuator motor and the latch memory. As shown in Fig. 1,
the output value of the variable F will be stored and propagated
to the next period as an input. The order of RRM model is
supported for two cycles, because we just need two cycles
to finish the application of starting and stoping the motor.
The RRM model is shown in Fig. 4. We need to initiate the
reliability of each component to construct the quantitative part
of RRM. We set the possible initiation for each component as:
Sensor(0.95), Memory(0.99), Processor(0.98), Actuator(0.99).

Then, we can use these parameters to initiate the conditional
probabilistic distribution for each node. For example, the
initialization of node s4 in Fig. 4 is presented in the table VI.
After we input the graph structure in Fig 4 and those cpd tables
into the software Nertica, we can get the final reliability of the
motor system. The reliability is 0.91. If we do not consider
the high order temporal correlations caused by the run-time
execution logic of the ladder program, the reliability for the
BN in Fig. 2 is 0.67. The simulation result is 0.83. It is clear
that RRM model is more closed to the simulation results.

TABLE VI
CPD FOR NODE s4 IN FIG 4.

P (xt
i|x

t
j , x

t
k) xt

i = 10 xt
i = 01 xt

i = 00 xt
i = 11

(00, zz) 0 1− 0.98 0.98 0
(01, z0) 0 1− 0.98 0.98 0
(01, z1) 0 0.98 1− 0.98 0
(10, 0z) 0 1− 0.98 0.98 0
(10, 1z) 0.98 0 0 1− 0.98
(11, 00) 0 1− 0.98 0.98 0
(11, 01) 0 0.98 0 1− 0.98
(11, 10) 0.98 0 0 1− 0.98
(11, 11) 1− 0.98 0 0 0.98

Our approach is applied in some complex applications
via more experiments. The first is an actual manufacturing
system originally published in [24]. It consists of four pistons
(A,B,C,D) to load parts from a machine table. There are
four different embedded ladder programs used to control
hardware component deployment to finish the application
[A+, B+, A − C+, B − C −], where +(-) means moving
left(right). The four ladder programs are presented in [15].
For the application we mentioned above, we need to unroll the
graph structure of each ladder program for four cycle of peri-
ods. We set the failure probabilities of the system components
as: sensor(0.95), Memory(0.99), PLC microprocessor (0.98),
pistons(0.95). We also change the reliability probability of the
processor and keep the others the same. Then, the reliability
probabilities of the system corresponding to the four ladder
programs are listed in the table VII.

From the six column of the table, we can see that for
the same application, the final reliability of the system are
different when it is controlled by different ladder programs.
The simulation time for the four ladder programs are 2813,
3021, 3527, and 3841 minutes, respectively. That means even
with the same hardware distributions and reliability for each
component, more complex ladder program will lead to lower
system reliability. Because more complex ladder program will

TABLE VII
RELIABILITY FOR THE PISTON SYSTEM CONTROLLED BY THE LADDER 1,

LADDER 2, LADDER 3, AND LADDER 4, RESPECTIVELY

processor ε RBD FT BN(HRM) RRM simulation
0.99 99.54% 99.54% 99.42% 99.33% 99.31%
0.98 99.43% 99.43% 99.27% 99.20% 99.18%
0.97 99.28% 99.28% 99.02% 98.93% 98.95%
0.96 99.06% 99.06% 98.66% 98.62% 98.59%
0.95 97.90% 97.90% 97.28% 97.18% 97.15%
0.94 95.39% 95.39% 94.63% 94.41% 94.36%
0.93 93.88% 93.88% 92.73% 92.36% 92.41%
0.92 91.97% 91.97% 90.74% 90.46% 90.39%
0.91 91.29% 91.29% 88.63% 88.36% 88.28%
0.90 90.76% 90.76% 85.25% 85.19% 85.10%

0.99 99.54% 99.54% 99.31% 99.27% 99.26%
0.98 99.43% 99.43% 99.19% 99.10% 99.08%
0.97 99.28% 99.28% 98.88% 98.76% 98.77%
0.96 99.06% 99.06% 98.47% 98.38% 98.36%
0.95 97.90% 97.90% 96.06% 95.88% 95.86%
0.94 95.39% 95.39% 93.53% 93.26% 93.22%
0.93 93.88% 93.88% 91.68% 91.41% 91.37%
0.92 91.97% 91.97% 88.74% 88.14% 88.08%
0.91 91.29% 91.29% 86.49% 86.26% 86.19%
0.90 90.76% 90.76% 83.98% 83.31% 83.33%

0.99 99.54% 99.54% 99.13% 99.06% 99.09%
0.98 99.43% 99.43% 98.91% 98.82% 98.80%
0.97 99.28% 99.28% 98.29% 98.19% 98.17%
0.96 99.06% 99.06% 97.54% 97.20% 97.19%
0.95 97.90% 97.90% 95.33% 95.22% 95.20%
0.94 95.39% 95.39% 92.97% 92.74% 92.69%
0.93 93.88% 93.88% 90.48% 90.32% 90.28%
0.92 91.97% 91.97% 88.03% 87.84% 87.80%
0.91 91.29% 91.29% 85.34% 84.99% 85.08%
0.90 90.76% 90.76% 82.83% 82.61% 82.49%

0.99 99.54% 99.54% 99.01% 98.95% 98.94%
0.98 99.43% 99.43% 98.78% 98.66% 98.70%
0.97 99.28% 99.28% 98.02% 97.95% 97.91%
0.96 99.06% 99.06% 97.29% 97.17% 97.16%
0.95 97.90% 97.90% 95.01% 94.89% 94.88%
0.94 95.39% 95.39% 92.65% 92.50% 92.48%
0.93 93.88% 93.88% 89.73% 89.43% 89.39%
0.92 91.97% 91.97% 87.63% 87.41% 87.36%
0.91 91.29% 91.29% 84.59% 84.25% 84.20%
0.90 90.76% 90.76% 81.43% 80.90% 81.07%

engender more complex arrangements of the logic executions
of system components, and more complex temporal dependen-
cies of between two periods.

From the second and third column of the table, we can see
that reliability obtained by the original component-based FT
and RBD methods, are the same for the four embedded ladder
programs. The points of the red line in the four figures are with
the same value for each reliability of processor. This is not
consistent to the simulation results. They mainly consider the
distribution of the hardware components, which are the same
for the four ladder programs. The signal dependencies among
them, and the complex relations caused by the execution logic
of the ladder program are ignored. Besides, the values are
all far from the simulation results. The HRM model [15]
improves the accuracy to some extent, as demonstrated in the
fourth column. It captures the semantic of ladder program in a
single time slice, and the run-time execution is not considered.
Hence, the temporal relations between two time slices are
ignored. The RRM model is more accurate. As shown in fifth
column of the table, the error between the RRM results and the
simulation results is less than 0.2%. The results gathered by

0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 7

way of RRM is more close to the run time station, because the
reliability probability of the single system component and the
complex execution logic of the ladder program are captured by
the graph structure of RRM model. Furthermore, for the four
ladder programs, the total time for RRM construction of our
algorithm and the evidences propagation is within 0.5 second.

The second complex systems is a control system for a
secondary clarifier scum removal [25]. It has been installed
in the Deer Island Water Pollution Treatment Facility near
Boston, MA. The system is controlled by a ladder diagram
which consists of 30 ladder rungs, which need to be unrolled
for ten cycles of periods. The third complex system is a double
door control system [26]. It has been installed in the Lingshan
stage in Qingdao city, China. It is controlled by a ladder
diagram which consists of 27 ladder rungs, which need to be
unrolled for eight cycles of periods. We set the reliability of
the system components similar to the piston system. Then, the
reliability of the two systems are presented in the table VIII.
From the table, the RRM is accurate, even with these complex
applications. The error between the simulations results and the
RRM based results is within 0.2%, and time is within 1 second.
The simulation time is thousands of minutes.

TABLE VIII
RELIABILITY FOR THE COMPLEX CLARIFIER DOUBLE DOOR CONTROL

SYSTEMAND CLARIFIER SCUM REMOVAL SYSTEM, RESPECTIVELY.

processor ε RBD FT BN(HRM) RRM simulation
0.99 98.47% 98.47% 98.23% 98.18% 98.17%
0.98 98.34% 98.34% 97.94% 97.90% 97.89%
0.97 97.87% 97.87% 97.30% 97.25% 97.24%
0.96 97.06% 97.06% 96.56% 96.52% 96.49%
0.95 96.13% 96.13% 95.24% 95.18% 95.17%
0.94 93.88% 93.88% 91.46% 91.40% 91.38%
0.93 92.33% 92.33% 89.17% 88.96% 88.98%
0.92 90.87% 90.87% 86.89% 86.61% 86.58%
0.91 88.68% 88.68% 84.20% 83.83% 83.79%
0.90 86.89% 86.89% 81.28% 80.88% 80.77%

0.99 98.43% 98.43% 98.16% 98.14% 98.13%
0.98 98.31% 98.31% 97.80% 97.76% 97.75%
0.97 97.29% 97.29% 96.64% 96.58% 96.57%
0.96 96.88% 96.88% 96.09% 95.99% 96.02%
0.95 95.41% 95.41% 93.63% 93.54% 93.51%
0.94 94.59% 94.59% 91.17% 91.00% 91.04%
0.93 92.38% 92.38% 88.19% 87.98% 87.88%
0.92 90.11% 90.11% 86.11% 85.80% 85.74%
0.91 88.69% 88.69% 83.22% 82.83% 82.78%
0.90 85.81% 85.81% 79.86% 79.55% 79.42%

From these experiments, we can see that the simulation
is the gold standard, but we need to set up the simulation
environment for each application separately very hard with
programming efforts of the test bench. Besides, the simulation
time is 2813, 4398, and 3524 minutes for the three complex
applications, respectively; the runtime of RRM is 0.49, 0.92,
and 0.84 seconds, respectively; the runtime of BN based HRM
is 0.12, 0.23, 0.19 seconds, respectively; and the runtime of
RBD and FT is 0.03, 0,06, 0.05 seconds, respectively. The
simulation is the most correct for the practice, but for the
big applications are even more time-consuming and resource-
consuming. The complexity of the graph construction algo-
rithm is O(m · nmax · T), where m is the number of ladder
rungs in the ladder program, nmax is the number of contacts in
the longest ladder rung, and the T is the number of unrolled

time slices. The time complexity of the exact inference in
Nertica is O(m·cn ·4|cmax|) [27], [28], where cn is the number
of cliques in the compiled junction tree of the original RRM
model, and the |cmax| is the number of contacts in the largest
clique. Although the runtime of RRM is longer than FT, RBD,
BN and HRM, the time is tolerant compared to simulation
and the accuracy is higher. From the complexity and accuracy
analysis above, it is safe to conclude that the proposed RRM
model is closer to the simulation results than that of the
original component-based FT, RBD and HRM framework with
an acceptable calculation time consumption.

VI. CONCLUSION

In this paper, we propose a run-time reliability model,
named RRM, to handle spatial and higher order temporal
dependencies among system components of the PLC sys-
tem, especially for the dependencies caused by the execution
logic of the embedded ladder program. With the proposed
translation algorithm, the execution logic of the embedded
program is mapped to RRM, which is formally proved to be a
dynamic bayesian network. According to semantics of RRM
nodes, conditional probability distribution tables are defined to
calculate reliability. All nodes can be mapped to corresponding
hardware components through the conditional probabilistic
distribution table initialization. Through these two mapping
processes, both the execution logic of the embedded control
software and the hardware components are captured. As a re-
sult, our approach brings convenience for predictive inferences
about the reliability of PLC systems.

REFERENCES

[1] M. Villani, M. Tursini, G. Fabri, and L. Castellini, “High reliability
permanent magnet brushless motor drive for aircraft application,” IEEE
Trans. Ind. Electron., vol. 59, no. 5, pp. 2073–2081, 2012.

[2] P. Jalote, B. Murphy, and V. S. Sharma, “Post-release reliability growth
in software products,” ACM Transaction on Software Engineering and
Method., vol. 17, no. 4, p. 17, 2008.

[3] X. Yu and A. Khambadkone, “Reliability analysis and cost optimization
of parallel inverter system,” IEEE Trans. Ind. Electron., no. 99, pp. 1–9,
2011.

[4] F. Chan and H. Calleja, “Reliability estimation of three single-phase
topologies in grid-connected pv systems,” IEEE Trans. Ind. Electron.,
vol. 58, no. 7, pp. 2683–2689, 2011.

[5] G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, and M. Vitelli,
“Reliability issues in photovoltaic power processing systems,” IEEE
Trans. Ind. Electron., vol. 55, no. 7, pp. 2569–2580, 2008.

[6] W. Lee, D. Grosh, and F. Tillman, “Fault tree analysis, methods, and
applications- a review.” IEEE Trans. Rel., vol. R-34, pp. 194–203, 1985.

[7] H. Guo and X. Yang, “A simple reliability block diagram method for
safety integrity verification,” Reliability Engineering & System Safety,
vol. 92, no. 9, pp. 1267–1273, 2007.

[8] C. Bai, Q. Hu, M. Xie, and S. Ng, “Software failure prediction based on
a Markov Bayesian network model,” Journal of Systems and Software,
vol. 74, no. 3, pp. 275–282, 2005.

[9] X. Zang, H. Sun, and K. Trivedi, “A BDD-based algorithm for reliability
evaluation of phased mission systems,” IEEE Trans. Rel., vol. 48, no. 1,
pp. 50–60, 1999.

[10] M. Bouissou and J. Bon, “A new formalism that combines advantages
of fault-trees and Markov models: Boolean logic Driven Markov Pro-
cesses,” Reliability Engineering & System Safety, vol. 82, no. 2, pp.
149–163, 2003.

[11] J. Dugan, S. Bavuso, and M. Boyd, “Dynamic fault-tree models for
fault-tolerant computer systems,” IEEE Trans. Rel., vol. 41, no. 3, pp.
363–377, 1992.

0278-0046 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TIE.2014.2316222, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 8

[12] S. Distefano and L. Xing, “A new approach to modeling the system
reliability: dynamic reliability block diagrams,” in Reliability and Main-
tainability Symposium, 2006. RAMS’06. Annual. IEEE, 2006, pp. 189–
195.

[13] H. Zhang., Y. Jiang., G. Yang., W. N. Hung., and J. Sun, “New strategies
for reliability analysis of programmable logic controllers,” Mathematical
and Computer Modelling, vol. 55, no. 9, pp. 1916–1931, 2012.

[14] H. Zhang., Y. Jiang., X. Song., W. N. Hung., M. Gu., and J. Sun,
“Symbolic analysis of plc systems,” IEEE Trans. Comput., vol. 90,
no. 90, pp. 1–15, 2013.

[15] Y. Jiang., H. Zhang., X. Jiao., W. N. Hung., M. Gu., and J. Sun,
“Bayesian network based reliability analysis of plc systems,” IEEE
Trans. Ind. Electron., vol. 60, no. 11, pp. 5325–5336, 2013.

[16] W. Bolton, Programmable logic controllers. Newnes, 2009.
[17] IEC 61131-3 Standard (PLC Programming Languages), 2nd ed., Inter-

national Electrotechnical Commission (IEC), 2003.
[18] Y. Jiang, “Formal proof of mapping rrm to dbn,”

https://sites.google.com/site/jiangyu198964/home.
[19] N. Best, M. Cowles, and S. Vines, “CODA Manual version 0.30,” MRC

Biostatistics Unit, Cambridge, UK, vol. 46, pp. 2020–2027, 1995.
[20] N. Manual, “Netica V1.05,” Norsys Software Corp, 1997.
[21] MITSUBISHI, “Gx simulator6-c,” http://www.filecrop.com/Mitsubishi-

GX-simulator.html, vol. 1, 2013.
[22] M. MELSOFT, “Gx simulator version 6: Operation maintenance

programming,” http://www.filecrop.com/Mitsubishi-GX-simulator.html,
vol. 1, 2013.

[23] L. Portinale and A. Bobbio, “Bayesian networks for dependability
analysis: an application to digital control reliability,” in Proceedings
of the Fifteenth conference on Uncertainty in artificial intelligence, ser.
UAI’99. ACM, 2010, pp. 551–558.

[24] K. Venkatesh, M. Zhou, and R. J. Caudill, “Comparing ladder logic
diagrams and petri nets for sequence controller design through a discrete
manufacturing system,” IEEE Trans. Ind. Electron., vol. 41, no. 6, pp.
611–619, December 1994.

[25] M. Zhou and E. Twiss, “Design of industrial automated systems via
relay ladder logic programming and petri nets,” IEEE Trans. Syst. Man
Cybern. C, Appl. Rev., vol. 28, no. 1, pp. 137–150, 1998.

[26] R. Wang, X. Song, J. Zhu, and M. Gu, “Formal modeling and synthesis
of programmable logic controllers,” Computers in Industry, vol. 62,
no. 1, pp. 23–31, 2011.

[27] J. Pearl, “Probabilistic reasoning in intelligent systems: networks of
plausible inference,” Artificial intelligence, pp. 1–288, 1988.

[28] K. P. Murphy, “Dynamic bayesian networks: representation, inference
and learning,” Ph.D. dissertation, University of California, 2002.

Yu Jiang received the BS degree in software engi-
neering from Beijing University of post and telecom-
munication, beijing, China, in 2010. He is currently
studying for the PhD degree in computer science
from Tsinghua University, Beijing, China. His cur-
rent research interests include domain specific mod-
eling, formal verification and their applications in
embedded systems.

Hehua Zhang received the BS and MS degree in
computer science from Jilin University, Changchun,
China, in 2001 and 2004, respectively. She received
the PhD degrees in computer science from Tsinghua
University, Beijing, China, in 2010. She is currently
a lecturer in the School of Software at Tsinghua
University. Her current research interests include
domain specific modeling, formal verification and
their applications in embedded systems.

Xiaoyu Song received the PhD degree from the
University of Pisa, Italy, 1991. In 1999, he joined
the faculty at Portland State University. He is cur-
rently a professor in the Department of Electrical &
Computer Engineering at Portland State University,
Oregon. His current research interests include for-
mal methods, design automation, embedded system
design, and emerging technologies.

Han Liu is a received the BS degree in software
engineering from Beijing University of post and
telecommunication, beijing, China, in 2012. He is
currently studying for the PhD degree in software en-
gineering from Tsinghua University, Beijing, China.
His current research interests include domain spe-
cific modeling, formal verification and their applica-
tions in embedded systems.

William N.N. Hung received the BS and MS de-
grees in electrical and computer engineering from
the University of Texas at Austin in 1994 and 1997,
respectively. He received the PhD degree in electri-
cal and computer engineering from Portland State
University, Oregon, in 2002. His research interests
include constraint solving, logic synthesis, physical
design, formal methods, combinatorial optimization,
nanotechnology, and quantum computing.

Ming Gu received the BS degree in computer sci-
ence from the National University of Defence Tech-
nology, Changsha, China, in 1984, and the MS de-
gree in computer science from the Chinese Academy
of Science at Shengyang in 1986. Since 1993, she
has been working as a professor in Tsinghua Univer-
sity. Her research interests include formal methods,
middleware technology, and distributed applications.

Jiaguang Sun received the BS degree in automation
science from Tsinghua University in 1970. He is
currently a professor in Tsinghua University. He
is dedicated in teaching and R&D activities in
computer graphics, computer-aided design, formal
verification of software, and system architecture. He
is currently the director of the School of Information
Science & Technology and the School of Software
in Tsinghua University.

