
Taming Interrupts for Verifying Industrial
Multifunction Vehicle Bus Controllers

Han Liu1,2,3(B), Yu Jiang1,2,3, Huafeng Zhang1,2,3, Ming Gu1,2,3,4,
and Jiaguang Sun1,2,3

1 Key Laboratory for Information System Security,
Ministry of Education, Beijing, China

2 Tsinghua National Laboratory for Information Science and Technology,
Beijing, China

3 School of Software, Tsinghua University, Beijing, China
liuhan0518@gmail.com

4 China Railway Rolling Stock Corporation (CRRC), Beijing, China

Abstract. Multifunction Vehicle Bus controllers (MVBC) are safety-
critical sub-systems in the industrial train communication network. As
an interrupt-driven system, MVBC is practically hard to verify. The rea-
sons are twofold. First, MVBC introduces the concurrency semantics of
deferred interrupt handlers and communication via hardware registers,
making existing formalism infeasible. Second, verifying MVBC requires
considering the environmental features (i.e., interrupt ordering), which
is hard to model and reason. To overcome these limitations, we pro-
posed a novel framework for formal verification on MVBC. First, we
formalized the concurrency semantics of MVBC and described a sequen-
tialization technique so that well-designed sequential analyses can be
performed. Moreover, we introduced the happen-before interrupt graph
to model interrupt dependency and further eliminate false alarms. The
framework scaled well on an industrial MVBC product from CRRC Inc.
and found 3 severe software bugs, which were all confirmed by engineers.

1 Introduction

Multifunction Vehicle Bus controllers (MVBC) are an essential sub-system in the
industrial train communication network (TCN). Unfortunately, as an interrupt-
driven system with software and hardware, MVBC is highly error-prone. Even
worse, employing formal verification on MVBC is practically challenging. The
reasons are twofold. First, MVBC incurs concurrency from random arrival of
interrupts, asynchronous handlers and software-hardware communication via
registers. Such concurrency is little clearly investigated and can fail existing
analyses. Second, MVBC is reactive to environmental inputs (i.e., interrupts),
but their dependency, i.e., in what order interrupts occur, is hard to reason.

Our Solution. We proposed a novel framework to verify MVBC in practice. We
first formalized its concurrency semantics and described a sequentialization tech-
nique, considering asynchronous deferral and hardware register communication.
c© Springer International Publishing AG 2016
J. Fitzgerald et al. (Eds.): FM 2016, LNCS 9995, pp. 764–771, 2016.
DOI: 10.1007/978-3-319-48989-6 48



Taming Interrupts for Verifying Industrial Multifunction Vehicle 765

The sequentialized programs can be then verified using existing sequential veri-
fiers. Second, we introduced the happen-before interrupt graph to model interrupt
dependency and further prune false alarms.

Contribution. Main contributions are summarized below.

– We formalized the interrupt-driven concurrency model of MVBC-like systems.
– We proposed a sequentialization based framework to practically verify MVBC.
– We have applied the framework on a real-world industrial MVBC product and

found 3 severe previously unknown bugs, which were all confirmed.

2 Multifunction Vehicle Bus Controller

MVBC is used to control the communication between the train bus and devices
[5,6]. As an interrupt-driven concurrent system, MVBC consists of both software
and hardware. While the classical concurrency semantics are widely discussed [3,
7,8], MVBC-like systems are relatively little studied. We first introduce two
highly-relevant concurrency features.

Asynchronous Deferral. To service an interrupt request, an Interrupt Ser-
vice Routine (ISR) will be invoked. ISR is prioritized and preemptive. It can
asynchronously post a deferral into a global FIFO queue for delayed execution.
Deferrals cannot preempt each other but can be preempted by other ISRs.

Hardware Registers. The communication between software and hardware
of MVBC is realized via shared hardware registers. The code below defines 2
macros for register writing and reading. Particularly, strict memory consistency
may be violated in this type of communication, e.g., a HAL IO INPUT after
HAL IO OUTPUT cannot guarantee to access the same value.

/∗ Write to hardware registers ∗/ /∗ Load from hardware registers ∗/
HAL IO OUTPUT(IO RESET | content); HAL IO INPUT( content);

Table 1. T: types. N: priority. V ar: variables. i: input. r: return value. e: expression.
b: basic statement. c: predicate. λ: empty rule. a: address for a register.

Formulation. First, we present an abstract language for MVBC as in Table 1.
We consider a collection of ISRs and deferral with shared variables. Supported
operations include basic control flow and post a deferral, (un)mask certain
ISR, write to and read from hardware registers. Then, we formalize the



766 H. Liu et al.

concurrency semantics as transitions on configurations. Each configuration is
〈P,M,R, S,Q〉 where P = ISR ∪ DF . M = P �→ {Idle,Run, Pend} denotes
the handler state. R = ISR �→ {true,false} × {true,false} identifies the
arrival and masking of interrupts. S is a stack for ISR with operations push, pop
and get the top. Q is a queue for deferral with operations enqueue, dequeue
and get the head.

The formal concurrency semantics is shown in Table 2. The Dispatch rule
models a preemption behavior of a ISR. Mask rule disables specific ISR. Without
arrival of interrupts, we Execute the top of the stack, or head of the queue.
Return semantics differs in ISR and deferral. The former leads to a pop while
the latter causes a dequeue. The Post of a deferral amounts to an enqueue.

Table 2. Semantics of MVBC. i, m, n ∈ ISR df ∈ DF p ∈ P . � is a wildcard.

3 Approach

In this section, we describe a general framework for verifying MVBC. The work-
flow of the framework is shown in Fig. 1. Given the MVBC programs, we first
employ a sequentialization via inserting schedule functions (Sect. 3.1). Then
based on the IEC 61375 and specifications, we model the interrupt depen-
dency using the happen-before interrupt graph (Sect. 3.2). The graph is lever-
aged to reduce the sequential programs. Next, we use an existing verifier (e.g.,
CBMC [2]) to verify the reduced sequential programs on safety-critical properties
of MVBC.

+

Fig. 1. The general framework for MVBC verification.



Taming Interrupts for Verifying Industrial Multifunction Vehicle 767

3.1 Sequentialization

The sequentialization of MVBC is realized via inserting the schedule functions,
which can simulate the concurrency through non-deterministic function calls. For
ISR, we adopt the similar sequentialization as [14] in left of Fig. 2. For deferral,
we propose the schedule df in right of Fig. 2 to run the FIFO queue. Further-
more, we use the schedule reg below to sequentialize the communication via
hardware registers. It non-deterministically modifies the register values.

Fig. 2. Schedule an ISR (Left) and a deferral (Right)

void scheduler_reg(int addr) { if(nondet()) update_reg(addr); }

Fig. 3. An example code before (Left) and after (Right) the sequentialization

Idea of Sequentialization. The insertion of schedule isr() is described
in [14]. schedule df() is inserted when deferral is posted. schedule reg()
is inserted after a write and before a read of hardware registers. An example
is shown in Fig. 3. In the right, schedule isr() is inserted after an write to
global variable in isr 1() (line 2) and df 2() (line 11). Because isr 2() has
higher priority than isr 1(), no insertions are in isr 2(). schedule df() is
inserted at line 8 and 12 to run the deferral queue. schedule reg() is inserted
at line 4 to capture possible communication between line 8 and 9 in the left.



768 H. Liu et al.

3.2 Happen-Before Interrupt Graph

Verification on MVBC requires reasoning the interrupt dependency. However,
such dependency lacks formulation. For example, IEC 61375 specifies that:

“After processing a main frame, a slave device will send a slave frame.”

We can conclude that no preemption occurs between interrupt handlers of main
and slave frames. However, transferring this kind of knowledge into a practical
use case is commonly time-consuming and error-prone. To mitigate this complex-
ity, we proposed the happen-before interrupt graph (HBIG) to capture domain
knowledge and automatically integrate with the verification.

The happen-before relation is denoted as ≺⊆ ISR× ISR. a ≺ b implies that
isr a is prior to and cannot be preempted by isr b. A HBIG G = (V, E),
where V is a set of interrupts and E denotes a set of happen-before relations.
HBIG can be considered as a directed graph. a ≺ b indicates a path from a to b
in the graph. On the contrary, two interrupts are unordered if no path connects
them. In the verification, a path suggests an infeasible interleaving between two
interrupts. Taking the code in left of Fig. 3 as an example, if isr 1 ≺ isr 2,
the schedule isr at line 2 of right of Fig. 3 can be reduced. To integrate
HBIG with the sequentialization, we add the following code before line 4 in
schedule isr of Fig. 2 to filter out infeasible interleaving.

/* hb(a,b) checks the path existence between a and b. */
if(hb(id, i) || hb(i, id)) continue;

4 Evaluation

Target System. We selected TiMVB, an industrial MVBC product from CRRC
Inc., as shown in left of Fig. 4. The ARM processor runs C programs on the
eCos1 operating system, and communicates with an FPGA via general-purpose
input output (GPIO) pins, which are hardware registers as in Sect. 2.

Fig. 4. TiMVB; HBIG; Int: interrupt, Reg: register communications.

TiMVB contains 4923 lines of C code and handles 7 types of interrupts, as
in right of Fig. 4 Except NT, other interrupts all communicate with FPGA via
1 http://ecos.sourceware.org/.

http://ecos.sourceware.org/.


Taming Interrupts for Verifying Industrial Multifunction Vehicle 769

registers. 5 priorities are set (0 is the highest), indicating a large state space.
Based on IEC 61375 and discussions with domain experts, we developed an
HBIG as in middle of Fig. 4. In specific, SPV happen-before all interrupts since
it can reach any other nodes. MF and SF happen-before other less-prioritized
interrupts except SYN, which implies that SYN interrupt can arrive in arbitrary
orders.

Verification Results. In the verification, we focused on two kinds of safety-
critical properties: (1) Data Validity (DV), Device state data must hold valid
values. (2) Frame Consistency (FC), Frame data must match frame types.

Fig. 5. Verification results. NoHB: without HBIG.
HB: with HBIG. OOM: Out of memory. Framed cell:
False alarm.

The verification results
are shown in Fig. 5. We
have exposed 1 bug on data
validity property (ID=2) and
2 bugs on frame consis-
tency property (ID=6,7). We
compared two verification
strategies: with and without
an HBIG. Based on Fig. 5,
HBIG helped improve the
time efficiency from 18.84 %
to 67.35 %. In particular, it
successfully scaled on a com-
plex verification when non-
HBIG strategy failed due to
memory limitation (ID=4). Moreover, the non-HBIG strategy reported a false
positive (ID=3) due to infeasible interleaving. HBIG based strategy, which
sequentialized the programs with well-formalized concurrency semantics, gen-
erated no false alarms.

1 void syncprocess_handle():
2 if (sync_checkbit == HAL_IO_ENUM_SYNC_STATUS):
3 mvb_arm_receive_sync(mvb_device_status_16);
4 mvb_device_status = *((MVB_DEVICE_STATUS*) & mvb_device_status_16);

1 #define mvb_arm_send_main_frame( content)
2 ba_mf = content; HAL_IO_OUTPUT(IO_RESET | content); \
3 HAL_IO_FRAME_WRITE_SIGNAL_PULSE; HAL_IO_SEND_MAIN_FRAME;

Two uncovered bugs are shown above (upper ID=2, lower ID=7). The upper
bug occurs when the ISR of SYN interrupt is preempted by MF or SF between
line 3 and 4. In that case, a write-write-read data race is triggered to taint the
global variable mvb device status 16. As for the lower bug, content of a main
frame is set (line 2) and then the frame type is set (line 3). A frame inconsistency
manifests when the sending operation of the hardware is performed in between,
causing a slave frame sent with the main frame content.



770 H. Liu et al.

5 Lessons Learned

i. Software correctness is not system reliability. Verification of embedded
software should reason their interactions with hardware, including the interaction
semantics and how it is implemented. In our case, without considering hardware
registers in TiMVB, the frame consistency bugs cannot be uncovered.

ii. “Interfaces” of formal methods are desired. One way to facilitate the
practical application of formal methods is a convenient interface to the practice.
In our case study, engineers used to hard-code the interrupt dependency, which
is imprecise and error-prone. From this point, the HBIG is practically useful by
encapsulating the implementation and offering high-level abstractions.

6 Related Work

Program Sequentialization. The original idea of sequentialization was to
transform a program within bounded context switches [8,10]. Later attempts
have considered balancing efficiency and accuracy [4,13], and handling asyn-
chrony [3,7,14]. We extended the sequentialization by modeling deferral into a
FIFO queue and leveraging HBIG for further reduction.

Analyses on Interrupts. Interrupt-driven software has been widely discussed
[1,9,14]. Schwarz et al. provided static analyses on prioritized tasks under
dynamical scheduling [12]. Schlich et al. proposed to reduce non-nested inter-
rupts [11]. Our insight is to formalize and analyze more real-world interrupt
semantics, including deferral and communication via hardware registers, which
have long been ignored.

7 Conclusion

In this paper, we introduced a verification framework for MVBC systems. The
framework is based on the formal semantics of MVBC to sequentialize interrupt
handlers and model their dependency. On an industrial product TiMVB, the
framework helped find two types of previously unknown defects, which were
confirmed by engineers. Our future plan includes verifying extensive real-world
systems and building industry-friendly tools.

Acknowledgement. This research is sponsored by NSFC Program (No.91218 302,
No.61527812), National Science and Technology Major Project (N0.16ZX010 38101),
MIIT IT funds (Research and application of TCN key technologies ) of China, and
National Key Technology R&D Program (No.2015BAG14B01-02).



Taming Interrupts for Verifying Industrial Multifunction Vehicle 771

References

1. Brylow, D., Damgaard, N., Palsberg, J.: Static checking of interrupt-driven soft-
ware. In: ICSE 2001, pp. 47–56 (2001)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

3. Emmi, M., Lal, A., Qadeer, S.: Asynchronous programs with prioritized task-
buffers. In: FSE 2012, pp. 48:1–48:11. ACM, New York (2012)

4. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Heidelberg
(2014)

5. Jiang, Y., et al.: Design and optimization of multiclocked embedded systems using
formal techniques. TIE 62, 1270–1278 (2015)

6. Jiang, Y., et al.: Design of mixed synchronous/asynchronous systems with multiple
clocks. TPDS 26, 2220–2232 (2015)

7. Kidd, N., Jagannathan, S., Vitek, J.: One stack to run them all: reducing concur-
rent analysis to sequential analysis under priority scheduling. In: Pol, J., Weber,
M. (eds.) SPIN 2010. LNCS, vol. 6349, pp. 245–261. Springer, Heidelberg (2010)

8. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. FMSD 35(1), 73–97 (2009)

9. Liu, H., et al.: idola: bridge modeling to verification and implementation of
interrupt-driven systems. In: TASE, pp. 193–200 (2014)

10. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: PLDI 2004, pp. 14–24
(2004)

11. Schlich, B., Noll, T., Brauer, J., Brutschy, L.: Reduction of interrupt handler exe-
cutions for model checking embedded software. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 5–20. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19237-1 5

12. Schwarz, D., et al.: Static analysis of interrupt-driven programs synchronized via
the priority ceiling protocol. In: POPL, pp. 93–104 (2011)

13. Tomasco, E., Inverso, O., Fischer, B., Torre, S., Parlato, G.: Verifying concur-
rent programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 551–565. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 52

14. Wu, X., Chen, L., Mine, A., Dong, W., Wang, J.: Numerical static analysis of
interrupt-driven programs via sequentialization. In: EMSOFT 2015, pp. 55–64
(2015)

http://dx.doi.org/10.1007/978-3-642-19237-1_5
http://dx.doi.org/10.1007/978-3-642-19237-1_5
http://dx.doi.org/10.1007/978-3-662-46681-0_52
http://dx.doi.org/10.1007/978-3-662-46681-0_52

	Taming Interrupts for Verifying Industrial Multifunction Vehicle Bus Controllers
	1 Introduction
	2 Multifunction Vehicle Bus Controller
	3 Approach
	3.1 Sequentialization
	3.2 Happen-Before Interrupt Graph

	4 Evaluation
	5 Lessons Learned
	6 Related Work
	7 Conclusion
	References


